Cerebral effects of commonly used vasopressor-inotropes: a study in newborn piglets.

<h4>Background</h4>Despite widespread use in sick infants, it is still debated whether vasopressor-inotropes have direct cerebral effects that might affect neurological outcome. We aimed to test direct cerebrovascular effects of three commonly used vasopressor-inotropes (adrenaline, dopa...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Gitte H Hahn, Simon Hyttel-Sorensen, Sandra M Petersen, Ole Pryds, Gorm Greisen
Formato: article
Lenguaje:EN
Publicado: Public Library of Science (PLoS) 2013
Materias:
R
Q
Acceso en línea:https://doaj.org/article/186ab10f67de48329e5138c904a0fbf3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:<h4>Background</h4>Despite widespread use in sick infants, it is still debated whether vasopressor-inotropes have direct cerebral effects that might affect neurological outcome. We aimed to test direct cerebrovascular effects of three commonly used vasopressor-inotropes (adrenaline, dopamine and noradrenaline) by comparing the responses to those of nonpharmacologically induced increases in blood pressure. We also searched for reasons for a mismatch between the response in perfusion and oxygenation.<h4>Methods</h4>Twenty-four piglets had long and short infusions of the three vasopressor-inotropes titrated to raise mean arterial blood pressure (MAP) 10 mmHg in random order. Nonpharmacological increases in MAP were induced by inflation of a balloon in the descending aorta. We measured cerebral oxygenation (near-infrared spectroscopy), perfusion (laser-Doppler), oxygen consumption (co-oximetry of arterial and superior sagittal sinus blood), and microvascular heterogeneity (side stream dark field video microscopy).<h4>Results</h4>Vasopressor-inotropes increased cerebral oxygenation significantly less (p≤0.01) compared to non-pharmacological MAP increases, whereas perfusion was similar. Furthermore, cerebral total hemoglobin concentration increased significantly less during vasopressor-inotrope infusions (p = 0.001). These physiologic responses were identical between the three vasopressor-inotropes (p>0.05). Furthermore, they induced a mild, although insignificant increase in cerebral metabolism and microvascular heterogeneity (p>0.05). Removal of the scalp tissue did not influence the mismatch (p>0.05).<h4>Conclusion</h4>We demonstrated a moderate vasopressor-inotrope induced mismatch between cerebral perfusion and oxygenation. Scalp removal did not affect this mismatch, why vasopressor-inotropes appear to have direct cerebral actions. The statistically nonsignificant increases in cerebral metabolism and/or microvascular heterogeneity may explain the mismatch. Alternatively, it may simply reflect a vasopressor-inotrope-induced decrease in the arterial-to-venous volume ratio as detected by near-infrared spectroscopy.