A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images...
Guardado en:
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/186c8ae68de040a5866157a2a3e971a1 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:186c8ae68de040a5866157a2a3e971a1 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:186c8ae68de040a5866157a2a3e971a12021-11-06T04:21:27ZA multi-scanner neuroimaging data harmonization using RAVEL and ComBat1095-957210.1016/j.neuroimage.2021.118703https://doaj.org/article/186c8ae68de040a5866157a2a3e971a12021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1053811921009642https://doaj.org/toc/1095-9572Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.Mahbaneh Eshaghzadeh TorbatiDavneet S. MinhasGhasan AhmadErin E. O’ConnorJohn MuschelliCharles M. LaymonZixi YangAnn D. CohenHoward J. AizensteinWilliam E. KlunkBradley T. ChristianSeong Jae HwangCiprian M. CrainiceanuDana L. TudorascuElsevierarticleMRIScanner effectsNormalizationHarmonizationAlzheimer's diseaseNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENNeuroImage, Vol 245, Iss , Pp 118703- (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
MRI Scanner effects Normalization Harmonization Alzheimer's disease Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 |
spellingShingle |
MRI Scanner effects Normalization Harmonization Alzheimer's disease Neurosciences. Biological psychiatry. Neuropsychiatry RC321-571 Mahbaneh Eshaghzadeh Torbati Davneet S. Minhas Ghasan Ahmad Erin E. O’Connor John Muschelli Charles M. Laymon Zixi Yang Ann D. Cohen Howard J. Aizenstein William E. Klunk Bradley T. Christian Seong Jae Hwang Ciprian M. Crainiceanu Dana L. Tudorascu A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
description |
Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance. |
format |
article |
author |
Mahbaneh Eshaghzadeh Torbati Davneet S. Minhas Ghasan Ahmad Erin E. O’Connor John Muschelli Charles M. Laymon Zixi Yang Ann D. Cohen Howard J. Aizenstein William E. Klunk Bradley T. Christian Seong Jae Hwang Ciprian M. Crainiceanu Dana L. Tudorascu |
author_facet |
Mahbaneh Eshaghzadeh Torbati Davneet S. Minhas Ghasan Ahmad Erin E. O’Connor John Muschelli Charles M. Laymon Zixi Yang Ann D. Cohen Howard J. Aizenstein William E. Klunk Bradley T. Christian Seong Jae Hwang Ciprian M. Crainiceanu Dana L. Tudorascu |
author_sort |
Mahbaneh Eshaghzadeh Torbati |
title |
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_short |
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_full |
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_fullStr |
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_full_unstemmed |
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat |
title_sort |
multi-scanner neuroimaging data harmonization using ravel and combat |
publisher |
Elsevier |
publishDate |
2021 |
url |
https://doaj.org/article/186c8ae68de040a5866157a2a3e971a1 |
work_keys_str_mv |
AT mahbaneheshaghzadehtorbati amultiscannerneuroimagingdataharmonizationusingravelandcombat AT davneetsminhas amultiscannerneuroimagingdataharmonizationusingravelandcombat AT ghasanahmad amultiscannerneuroimagingdataharmonizationusingravelandcombat AT erineoconnor amultiscannerneuroimagingdataharmonizationusingravelandcombat AT johnmuschelli amultiscannerneuroimagingdataharmonizationusingravelandcombat AT charlesmlaymon amultiscannerneuroimagingdataharmonizationusingravelandcombat AT zixiyang amultiscannerneuroimagingdataharmonizationusingravelandcombat AT anndcohen amultiscannerneuroimagingdataharmonizationusingravelandcombat AT howardjaizenstein amultiscannerneuroimagingdataharmonizationusingravelandcombat AT williameklunk amultiscannerneuroimagingdataharmonizationusingravelandcombat AT bradleytchristian amultiscannerneuroimagingdataharmonizationusingravelandcombat AT seongjaehwang amultiscannerneuroimagingdataharmonizationusingravelandcombat AT ciprianmcrainiceanu amultiscannerneuroimagingdataharmonizationusingravelandcombat AT danaltudorascu amultiscannerneuroimagingdataharmonizationusingravelandcombat AT mahbaneheshaghzadehtorbati multiscannerneuroimagingdataharmonizationusingravelandcombat AT davneetsminhas multiscannerneuroimagingdataharmonizationusingravelandcombat AT ghasanahmad multiscannerneuroimagingdataharmonizationusingravelandcombat AT erineoconnor multiscannerneuroimagingdataharmonizationusingravelandcombat AT johnmuschelli multiscannerneuroimagingdataharmonizationusingravelandcombat AT charlesmlaymon multiscannerneuroimagingdataharmonizationusingravelandcombat AT zixiyang multiscannerneuroimagingdataharmonizationusingravelandcombat AT anndcohen multiscannerneuroimagingdataharmonizationusingravelandcombat AT howardjaizenstein multiscannerneuroimagingdataharmonizationusingravelandcombat AT williameklunk multiscannerneuroimagingdataharmonizationusingravelandcombat AT bradleytchristian multiscannerneuroimagingdataharmonizationusingravelandcombat AT seongjaehwang multiscannerneuroimagingdataharmonizationusingravelandcombat AT ciprianmcrainiceanu multiscannerneuroimagingdataharmonizationusingravelandcombat AT danaltudorascu multiscannerneuroimagingdataharmonizationusingravelandcombat |
_version_ |
1718443901274030080 |