A multi-scanner neuroimaging data harmonization using RAVEL and ComBat

Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mahbaneh Eshaghzadeh Torbati, Davneet S. Minhas, Ghasan Ahmad, Erin E. O’Connor, John Muschelli, Charles M. Laymon, Zixi Yang, Ann D. Cohen, Howard J. Aizenstein, William E. Klunk, Bradley T. Christian, Seong Jae Hwang, Ciprian M. Crainiceanu, Dana L. Tudorascu
Formato: article
Lenguaje:EN
Publicado: Elsevier 2021
Materias:
MRI
Acceso en línea:https://doaj.org/article/186c8ae68de040a5866157a2a3e971a1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:186c8ae68de040a5866157a2a3e971a1
record_format dspace
spelling oai:doaj.org-article:186c8ae68de040a5866157a2a3e971a12021-11-06T04:21:27ZA multi-scanner neuroimaging data harmonization using RAVEL and ComBat1095-957210.1016/j.neuroimage.2021.118703https://doaj.org/article/186c8ae68de040a5866157a2a3e971a12021-12-01T00:00:00Zhttp://www.sciencedirect.com/science/article/pii/S1053811921009642https://doaj.org/toc/1095-9572Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.Mahbaneh Eshaghzadeh TorbatiDavneet S. MinhasGhasan AhmadErin E. O’ConnorJohn MuschelliCharles M. LaymonZixi YangAnn D. CohenHoward J. AizensteinWilliam E. KlunkBradley T. ChristianSeong Jae HwangCiprian M. CrainiceanuDana L. TudorascuElsevierarticleMRIScanner effectsNormalizationHarmonizationAlzheimer's diseaseNeurosciences. Biological psychiatry. NeuropsychiatryRC321-571ENNeuroImage, Vol 245, Iss , Pp 118703- (2021)
institution DOAJ
collection DOAJ
language EN
topic MRI
Scanner effects
Normalization
Harmonization
Alzheimer's disease
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
spellingShingle MRI
Scanner effects
Normalization
Harmonization
Alzheimer's disease
Neurosciences. Biological psychiatry. Neuropsychiatry
RC321-571
Mahbaneh Eshaghzadeh Torbati
Davneet S. Minhas
Ghasan Ahmad
Erin E. O’Connor
John Muschelli
Charles M. Laymon
Zixi Yang
Ann D. Cohen
Howard J. Aizenstein
William E. Klunk
Bradley T. Christian
Seong Jae Hwang
Ciprian M. Crainiceanu
Dana L. Tudorascu
A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
description Modern neuroimaging studies frequently combine data collected from multiple scanners and experimental conditions. Such data often contain substantial technical variability associated with image intensity scale (image intensity scales are not the same in different images) and scanner effects (images obtained from different scanners contain substantial technical biases). Here we evaluate and compare results of data analysis methods without any data transformation (RAW), with intensity normalization using RAVEL, with regional harmonization methods using ComBat, and a combination of RAVEL and ComBat. Methods are evaluated on a unique sample of 16 study participants who were scanned on both 1.5T and 3T scanners a few months apart. Neuroradiological evaluation was conducted for 7 different regions of interest (ROI's) pertinent to Alzheimer's disease (AD). Cortical measures and results indicate that: (1) RAVEL substantially improved the reproducibility of image intensities; (2) ComBat is preferred over RAVEL and the RAVEL-ComBat combination in terms of regional level harmonization due to more consistent harmonization across subjects and image-derived measures; (3) RAVEL and ComBat substantially reduced bias compared to analysis of RAW images, but RAVEL also resulted in larger variance; and (4) the larger root mean square deviation (RMSD) of RAVEL compared to ComBat is due mainly to its larger variance.
format article
author Mahbaneh Eshaghzadeh Torbati
Davneet S. Minhas
Ghasan Ahmad
Erin E. O’Connor
John Muschelli
Charles M. Laymon
Zixi Yang
Ann D. Cohen
Howard J. Aizenstein
William E. Klunk
Bradley T. Christian
Seong Jae Hwang
Ciprian M. Crainiceanu
Dana L. Tudorascu
author_facet Mahbaneh Eshaghzadeh Torbati
Davneet S. Minhas
Ghasan Ahmad
Erin E. O’Connor
John Muschelli
Charles M. Laymon
Zixi Yang
Ann D. Cohen
Howard J. Aizenstein
William E. Klunk
Bradley T. Christian
Seong Jae Hwang
Ciprian M. Crainiceanu
Dana L. Tudorascu
author_sort Mahbaneh Eshaghzadeh Torbati
title A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_short A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_full A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_fullStr A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_full_unstemmed A multi-scanner neuroimaging data harmonization using RAVEL and ComBat
title_sort multi-scanner neuroimaging data harmonization using ravel and combat
publisher Elsevier
publishDate 2021
url https://doaj.org/article/186c8ae68de040a5866157a2a3e971a1
work_keys_str_mv AT mahbaneheshaghzadehtorbati amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT davneetsminhas amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT ghasanahmad amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT erineoconnor amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT johnmuschelli amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT charlesmlaymon amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT zixiyang amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT anndcohen amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT howardjaizenstein amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT williameklunk amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT bradleytchristian amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT seongjaehwang amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT ciprianmcrainiceanu amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT danaltudorascu amultiscannerneuroimagingdataharmonizationusingravelandcombat
AT mahbaneheshaghzadehtorbati multiscannerneuroimagingdataharmonizationusingravelandcombat
AT davneetsminhas multiscannerneuroimagingdataharmonizationusingravelandcombat
AT ghasanahmad multiscannerneuroimagingdataharmonizationusingravelandcombat
AT erineoconnor multiscannerneuroimagingdataharmonizationusingravelandcombat
AT johnmuschelli multiscannerneuroimagingdataharmonizationusingravelandcombat
AT charlesmlaymon multiscannerneuroimagingdataharmonizationusingravelandcombat
AT zixiyang multiscannerneuroimagingdataharmonizationusingravelandcombat
AT anndcohen multiscannerneuroimagingdataharmonizationusingravelandcombat
AT howardjaizenstein multiscannerneuroimagingdataharmonizationusingravelandcombat
AT williameklunk multiscannerneuroimagingdataharmonizationusingravelandcombat
AT bradleytchristian multiscannerneuroimagingdataharmonizationusingravelandcombat
AT seongjaehwang multiscannerneuroimagingdataharmonizationusingravelandcombat
AT ciprianmcrainiceanu multiscannerneuroimagingdataharmonizationusingravelandcombat
AT danaltudorascu multiscannerneuroimagingdataharmonizationusingravelandcombat
_version_ 1718443901274030080