Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos

Seed transmission of endophytic microorganisms is a growing research area in plant biology and microbiology. We employed cultivation versus cultivation-independent approaches on excised embryos from watermelon seeds (6–12 months in storage) and on embryo-derived in vitro seedlings (EIVS) to assess t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Pious Thomas, Pramod Kumar Sahu
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/1877681c101a4e9c890e53b522a383ae
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1877681c101a4e9c890e53b522a383ae
record_format dspace
spelling oai:doaj.org-article:1877681c101a4e9c890e53b522a383ae2021-11-15T11:29:18ZVertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos1664-302X10.3389/fmicb.2021.635810https://doaj.org/article/1877681c101a4e9c890e53b522a383ae2021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fmicb.2021.635810/fullhttps://doaj.org/toc/1664-302XSeed transmission of endophytic microorganisms is a growing research area in plant biology and microbiology. We employed cultivation versus cultivation-independent approaches on excised embryos from watermelon seeds (6–12 months in storage) and on embryo-derived in vitro seedlings (EIVS) to assess the vertical transmission of endophytic bacteria. Surface-disinfected watermelon seeds bore abundant residual bacteria in the testa and perisperm tissues, predominantly Bacillus spp. propounding the essentiality of excluding all non-embryonic tissues for vertical transmission studies. Tissue homogenates from re-disinfected seed embryos displayed no cultivable bacteria during the 1-week monitoring. Bright-field live microscopy revealed abundant bacteria in tissue homogenates and in embryo sections as intracellular motile particles. Confocal imaging on embryo sections after SYTO-9 staining and eubacterial fluorescent in situ hybridization (FISH) endorsed enormous bacterial colonization. Quantitative Insights Into Microbial Ecology (QIIME)-based 16S rRNA V3–V4 taxonomic profiling excluding the preponderant chloroplast and mitochondrial sequences revealed a high bacterial diversity in watermelon seed embryos mainly Firmicutes barring spore formers followed by Proteobacteria, Bacteroidetes, and Actinobacteria, and other minor phyla. Embryo-base (comprising the radicle plus plumule parts) and embryo-cotyledon parts differed in bacterial profiles with the abundance of Firmicutes in the former and Proteobacteria dominance in the latter. EIVS displayed a higher bacterial diversity over seed embryos indicating the activation from the dormant stage of more organisms in seedlings or their better amenability to DNA techniques. It also indicated embryo-to-seedling bacterial transmission, varying taxonomic abundances for seed embryos and seedlings, and differing phylogenic profiles for root, hypocotyl, and cotyledon/shoot-tip tissues. Investigations on different watermelon cultivars confirmed the embryo transmission of diverse cultivation recalcitrant endophytic bacteria. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes formed the core phyla across different cultivars with 80–90% similarity at genus to phylum levels. Conversely, freshly harvested seeds displayed a dominance of Proteobacteria. The findings revealed that dicot seeds such as in different watermelon cultivars come packaged with abundant and diverse vertical and seedling-transmissible cultivation recalcitrant endophytic bacteria with significant implications for plant biology.Pious ThomasPious ThomasPramod Kumar SahuFrontiers Media S.A.article16S rRNA amplicon profilingCitrullus lanatus (Thumb.) Matsum. and Nakaimetagenomicsseed microbial communityplant microbiome biodiversitycultivation recalcitrant endophytic bacteriaMicrobiologyQR1-502ENFrontiers in Microbiology, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic 16S rRNA amplicon profiling
Citrullus lanatus (Thumb.) Matsum. and Nakai
metagenomics
seed microbial community
plant microbiome biodiversity
cultivation recalcitrant endophytic bacteria
Microbiology
QR1-502
spellingShingle 16S rRNA amplicon profiling
Citrullus lanatus (Thumb.) Matsum. and Nakai
metagenomics
seed microbial community
plant microbiome biodiversity
cultivation recalcitrant endophytic bacteria
Microbiology
QR1-502
Pious Thomas
Pious Thomas
Pramod Kumar Sahu
Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos
description Seed transmission of endophytic microorganisms is a growing research area in plant biology and microbiology. We employed cultivation versus cultivation-independent approaches on excised embryos from watermelon seeds (6–12 months in storage) and on embryo-derived in vitro seedlings (EIVS) to assess the vertical transmission of endophytic bacteria. Surface-disinfected watermelon seeds bore abundant residual bacteria in the testa and perisperm tissues, predominantly Bacillus spp. propounding the essentiality of excluding all non-embryonic tissues for vertical transmission studies. Tissue homogenates from re-disinfected seed embryos displayed no cultivable bacteria during the 1-week monitoring. Bright-field live microscopy revealed abundant bacteria in tissue homogenates and in embryo sections as intracellular motile particles. Confocal imaging on embryo sections after SYTO-9 staining and eubacterial fluorescent in situ hybridization (FISH) endorsed enormous bacterial colonization. Quantitative Insights Into Microbial Ecology (QIIME)-based 16S rRNA V3–V4 taxonomic profiling excluding the preponderant chloroplast and mitochondrial sequences revealed a high bacterial diversity in watermelon seed embryos mainly Firmicutes barring spore formers followed by Proteobacteria, Bacteroidetes, and Actinobacteria, and other minor phyla. Embryo-base (comprising the radicle plus plumule parts) and embryo-cotyledon parts differed in bacterial profiles with the abundance of Firmicutes in the former and Proteobacteria dominance in the latter. EIVS displayed a higher bacterial diversity over seed embryos indicating the activation from the dormant stage of more organisms in seedlings or their better amenability to DNA techniques. It also indicated embryo-to-seedling bacterial transmission, varying taxonomic abundances for seed embryos and seedlings, and differing phylogenic profiles for root, hypocotyl, and cotyledon/shoot-tip tissues. Investigations on different watermelon cultivars confirmed the embryo transmission of diverse cultivation recalcitrant endophytic bacteria. Firmicutes, Proteobacteria, Actinobacteria, and Bacteroidetes formed the core phyla across different cultivars with 80–90% similarity at genus to phylum levels. Conversely, freshly harvested seeds displayed a dominance of Proteobacteria. The findings revealed that dicot seeds such as in different watermelon cultivars come packaged with abundant and diverse vertical and seedling-transmissible cultivation recalcitrant endophytic bacteria with significant implications for plant biology.
format article
author Pious Thomas
Pious Thomas
Pramod Kumar Sahu
author_facet Pious Thomas
Pious Thomas
Pramod Kumar Sahu
author_sort Pious Thomas
title Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos
title_short Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos
title_full Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos
title_fullStr Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos
title_full_unstemmed Vertical Transmission of Diverse Cultivation-Recalcitrant Endophytic Bacteria Elucidated Using Watermelon Seed Embryos
title_sort vertical transmission of diverse cultivation-recalcitrant endophytic bacteria elucidated using watermelon seed embryos
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/1877681c101a4e9c890e53b522a383ae
work_keys_str_mv AT piousthomas verticaltransmissionofdiversecultivationrecalcitrantendophyticbacteriaelucidatedusingwatermelonseedembryos
AT piousthomas verticaltransmissionofdiversecultivationrecalcitrantendophyticbacteriaelucidatedusingwatermelonseedembryos
AT pramodkumarsahu verticaltransmissionofdiversecultivationrecalcitrantendophyticbacteriaelucidatedusingwatermelonseedembryos
_version_ 1718428416624033792