Feature Selection Methods Based on Symmetric Uncertainty Coefficients and Independent Classification Information
Feature selection is a critical step in the data preprocessing phase in the field of pattern recognition and machine learning. The core of feature selection is to analyze and quantify the relevance, irrelevance, and redundancy between features and class labels. While existing feature selection metho...
Guardado en:
Autores principales: | Li Zhang, Xiaobo Chen |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1897ab04eefd4547a0398a1341baba7e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
An Efficient SVM-Based Feature Selection Model for Cancer Classification Using High-Dimensional Microarray Data
por: Passent El Kafrawy, et al.
Publicado: (2021) -
Toward a Fair Evaluation and Analysis of Feature Selection for Music Tag Classification
por: Jonghoon Chae, et al.
Publicado: (2021) -
Redundancy Is Not Necessarily Detrimental in Classification Problems
por: Sebastián Alberto Grillo, et al.
Publicado: (2021) -
Approaches to Multi-Objective Feature Selection: A Systematic Literature Review
por: Qasem Al-Tashi, et al.
Publicado: (2020) -
Empirical Analysis of Feature Reduction in Deep Learning and Conventional Methods for Foot Image Classification
por: Jermphiphut Jaruenpunyasak, et al.
Publicado: (2021)