Synergy of multi-temporal polarimetric SAR and optical image satellite for mapping of marsh vegetation using object-based random forest algorithm
The accurate classification of marsh vegetation is an important prerequisite for wetland management and protection. In this study, the Honghe National Nature Reserve was used as the research area. The VV and VH polarized backscattering coefficients of Sentinel-1B, the polarimetric decomposition para...
Guardado en:
Autores principales: | Bolin Fu, Shuyu Xie, Hongchang He, Pingping Zuo, Jun Sun, Lilong Liu, Liangke Huang, Donglin Fan, Ertao Gao |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/18a3af00c79143d48e2327b57fa6d43a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Comparison of multi-source satellite images for classifying marsh vegetation using DeepLabV3 Plus deep learning algorithm
por: Man Liu, et al.
Publicado: (2021) -
An Urban Flooding Index for Unsupervised Inundated Urban Area Detection Using Sentinel-1 Polarimetric SAR Images
por: Hui Zhang, et al.
Publicado: (2021) -
Temperature sensitivity of anaerobic CO2 production in soils of Phragmites australis marshes with distinct hydrological characteristics in the Yellow River estuary
por: Yue Liu, et al.
Publicado: (2021) -
Fire effects on a Spartina densiflora salt marsh in the floodplain of the Paraná River, Argentina
por: MADANES,NORA, et al.
Publicado: (2007) -
Polarimetric SAR Speckle Filtering Using a Nonlocal Weighted LMMSE Filter
por: Yinbin Shen, et al.
Publicado: (2021)