Machine Learning Approaches to Predict Chronic Lower Back Pain in People Aged over 50 Years
<i>Background and Objectives</i>: Chronic lower back pain (LBP) is a common clinical disorder. The early identification of patients who will develop chronic LBP would help develop preventive measures and treatment. We aimed to develop machine learning models that can accurately predict t...
Guardado en:
Autores principales: | Jae-Geum Shim, Kyoung-Ho Ryu, Eun-Ah Cho, Jin Hee Ahn, Hong Kyoon Kim, Yoon-Ju Lee, Sung Hyun Lee |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/18b154ed718a4afda00f4e53d0622d5e |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Identifying the Machine Learning Techniques for Classification of Target Datasets
por: Abdul Ahad Abro, et al.
Publicado: (2020) -
Choriocarcinoma in a viable pregnancy with the rare presentation of intractable lower back pain
por: Lulu Huang, et al.
Publicado: (2021) -
Machine learning approaches for the prediction of lameness in dairy cows
por: S. Shahinfar, et al.
Publicado: (2021) -
KNN-SC: Novel Spectral Clustering Algorithm Using k-Nearest Neighbors
por: Jeong-Hun Kim, et al.
Publicado: (2021) -
Identifying relations between posture and pain in lower back pain patients: a narrative review
por: Sai Kripa, et al.
Publicado: (2021)