Comparison of bias and resolvability in single-cell and single-transcript methods

Rammohan et al. propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is defined and compared between methods. Their framework provides a practical solution for benchmarking and comparing the performance of any method, ill...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jayan Rammohan, Steven P. Lund, Nina Alperovich, Vanya Paralanov, Elizabeth A. Strychalski, David Ross
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/18b4195254e744b8911081408a581ce2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Rammohan et al. propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is defined and compared between methods. Their framework provides a practical solution for benchmarking and comparing the performance of any method, illustrated by analysing single-cell and single-transcript methods.