Comparison of bias and resolvability in single-cell and single-transcript methods

Rammohan et al. propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is defined and compared between methods. Their framework provides a practical solution for benchmarking and comparing the performance of any method, ill...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jayan Rammohan, Steven P. Lund, Nina Alperovich, Vanya Paralanov, Elizabeth A. Strychalski, David Ross
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Acceso en línea:https://doaj.org/article/18b4195254e744b8911081408a581ce2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:18b4195254e744b8911081408a581ce2
record_format dspace
spelling oai:doaj.org-article:18b4195254e744b8911081408a581ce22021-12-02T15:56:49ZComparison of bias and resolvability in single-cell and single-transcript methods10.1038/s42003-021-02138-62399-3642https://doaj.org/article/18b4195254e744b8911081408a581ce22021-06-01T00:00:00Zhttps://doi.org/10.1038/s42003-021-02138-6https://doaj.org/toc/2399-3642Rammohan et al. propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is defined and compared between methods. Their framework provides a practical solution for benchmarking and comparing the performance of any method, illustrated by analysing single-cell and single-transcript methods.Jayan RammohanSteven P. LundNina AlperovichVanya ParalanovElizabeth A. StrychalskiDavid RossNature PortfolioarticleBiology (General)QH301-705.5ENCommunications Biology, Vol 4, Iss 1, Pp 1-14 (2021)
institution DOAJ
collection DOAJ
language EN
topic Biology (General)
QH301-705.5
spellingShingle Biology (General)
QH301-705.5
Jayan Rammohan
Steven P. Lund
Nina Alperovich
Vanya Paralanov
Elizabeth A. Strychalski
David Ross
Comparison of bias and resolvability in single-cell and single-transcript methods
description Rammohan et al. propose a generalizable framework for performing multiple methods in parallel using split samples, so that experimental variability is defined and compared between methods. Their framework provides a practical solution for benchmarking and comparing the performance of any method, illustrated by analysing single-cell and single-transcript methods.
format article
author Jayan Rammohan
Steven P. Lund
Nina Alperovich
Vanya Paralanov
Elizabeth A. Strychalski
David Ross
author_facet Jayan Rammohan
Steven P. Lund
Nina Alperovich
Vanya Paralanov
Elizabeth A. Strychalski
David Ross
author_sort Jayan Rammohan
title Comparison of bias and resolvability in single-cell and single-transcript methods
title_short Comparison of bias and resolvability in single-cell and single-transcript methods
title_full Comparison of bias and resolvability in single-cell and single-transcript methods
title_fullStr Comparison of bias and resolvability in single-cell and single-transcript methods
title_full_unstemmed Comparison of bias and resolvability in single-cell and single-transcript methods
title_sort comparison of bias and resolvability in single-cell and single-transcript methods
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/18b4195254e744b8911081408a581ce2
work_keys_str_mv AT jayanrammohan comparisonofbiasandresolvabilityinsinglecellandsingletranscriptmethods
AT stevenplund comparisonofbiasandresolvabilityinsinglecellandsingletranscriptmethods
AT ninaalperovich comparisonofbiasandresolvabilityinsinglecellandsingletranscriptmethods
AT vanyaparalanov comparisonofbiasandresolvabilityinsinglecellandsingletranscriptmethods
AT elizabethastrychalski comparisonofbiasandresolvabilityinsinglecellandsingletranscriptmethods
AT davidross comparisonofbiasandresolvabilityinsinglecellandsingletranscriptmethods
_version_ 1718385375161876480