The potential of FFNN and MLP-FFA approaches in prediction of Manning coefficient in ripple and dune bedforms
An accurate prediction of roughness coefficient is of substantial importance for river management. The current study applies two artificial intelligence methods namely; Feed-Forward Neural Network (FFNN) and Multilayer Perceptron Firefly Algorithm (MLP-FFA) to predict the Manning roughness coefficie...
Enregistré dans:
Auteurs principaux: | Vahid Abdi, Seyed Mahdi Saghebian |
---|---|
Format: | article |
Langue: | EN |
Publié: |
IWA Publishing
2021
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/18c5de7e01ef4393bc3c02fa6fe3a656 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
MLP-Based Model for Estimation of Methane Seam Pressure
par: Marta Skiba, et autres
Publié: (2021) -
Insights into the prediction capability of roughness coefficient in current ripple bedforms under varied hydraulic conditions
par: Kiyoumars Roushangar, et autres
Publié: (2021) -
Considerations on Acoustic Mapping Velocimetry (AMV) Application for in-situ Measurement of Bedform Dynamics
par: H. You, et autres
Publié: (2021) -
Comparison of Regression and Neural Networks Models to Estimate Solar Radiation
par: Bocco,Mónica, et autres
Publié: (2010) -
Aplicación de Técnicas Neuro-Difusas para el Diseño de un Controlador
par: Noriega,A., et autres
Publié: (2005)