Experimental study of the effect of dynamic loading on rectangular armed panels made of self-compacting composite fiber and lattice sheets

The nature of dynamic loading is different due to the high force in a few milliseconds with static loading. The amount of energy absorption and energy loss in composite materials is a suitable measurement to evaluate the performance against impact loads. On the other hand, the use of self-compacting...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ahmad Dalvand, Hossein Hatami, Arezo Seyedi Chegini
Formato: article
Lenguaje:FA
Publicado: Iranian Society of Structrual Engineering (ISSE) 2021
Materias:
Acceso en línea:https://doaj.org/article/18caa6df29ac4002ad12d188499f7c06
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:The nature of dynamic loading is different due to the high force in a few milliseconds with static loading. The amount of energy absorption and energy loss in composite materials is a suitable measurement to evaluate the performance against impact loads. On the other hand, the use of self-compacting composites due to its unique properties has attracted the attention of researchers. High compressive and tensile strength, high flexural strength, has attracted more attention from researchers to this kind of cement composites. In this research, in the form of a comprehensive laboratory work, using four basement mixing designs, 64 rectangular composite panels were constructed in two groups of 100*100 mm with four thicknesses of 30, 45, 60 and 75 mm and tested under dynamic loading. Tensile and flexural strength tests were made on all four mixing designs. Steel fibers with percentages of 0, 0.25, 0.5 and 0.75 with length of 25 mm were used for the construction of cement composites. The drop hammer test machine with weighs 180 kg and the power of 7500 J is used. According to laboratory results, the combined use of steel and fiber reinforced steel sheets increased the energy absorption considerably. Also, the initial peak force increased and the deformation length decreased.