Assessing the accuracy of automatic speech recognition for psychotherapy
Abstract Accurate transcription of audio recordings in psychotherapy would improve therapy effectiveness, clinician training, and safety monitoring. Although automatic speech recognition software is commercially available, its accuracy in mental health settings has not been well described. It is unc...
Guardado en:
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/18d9cddcaf5d45d09a077f644a1611a5 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:18d9cddcaf5d45d09a077f644a1611a5 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:18d9cddcaf5d45d09a077f644a1611a52021-12-02T17:50:57ZAssessing the accuracy of automatic speech recognition for psychotherapy10.1038/s41746-020-0285-82398-6352https://doaj.org/article/18d9cddcaf5d45d09a077f644a1611a52020-06-01T00:00:00Zhttps://doi.org/10.1038/s41746-020-0285-8https://doaj.org/toc/2398-6352Abstract Accurate transcription of audio recordings in psychotherapy would improve therapy effectiveness, clinician training, and safety monitoring. Although automatic speech recognition software is commercially available, its accuracy in mental health settings has not been well described. It is unclear which metrics and thresholds are appropriate for different clinical use cases, which may range from population descriptions to individual safety monitoring. Here we show that automatic speech recognition is feasible in psychotherapy, but further improvements in accuracy are needed before widespread use. Our HIPAA-compliant automatic speech recognition system demonstrated a transcription word error rate of 25%. For depression-related utterances, sensitivity was 80% and positive predictive value was 83%. For clinician-identified harm-related sentences, the word error rate was 34%. These results suggest that automatic speech recognition may support understanding of language patterns and subgroup variation in existing treatments but may not be ready for individual-level safety surveillance.Adam S. MinerAlbert HaqueJason A. FriesScott L. FlemingDenise E. WilfleyG. Terence WilsonArnold MilsteinDan JurafskyBruce A. ArnowW. Stewart AgrasLi Fei-FeiNigam H. ShahNature PortfolioarticleComputer applications to medicine. Medical informaticsR858-859.7ENnpj Digital Medicine, Vol 3, Iss 1, Pp 1-8 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Computer applications to medicine. Medical informatics R858-859.7 |
spellingShingle |
Computer applications to medicine. Medical informatics R858-859.7 Adam S. Miner Albert Haque Jason A. Fries Scott L. Fleming Denise E. Wilfley G. Terence Wilson Arnold Milstein Dan Jurafsky Bruce A. Arnow W. Stewart Agras Li Fei-Fei Nigam H. Shah Assessing the accuracy of automatic speech recognition for psychotherapy |
description |
Abstract Accurate transcription of audio recordings in psychotherapy would improve therapy effectiveness, clinician training, and safety monitoring. Although automatic speech recognition software is commercially available, its accuracy in mental health settings has not been well described. It is unclear which metrics and thresholds are appropriate for different clinical use cases, which may range from population descriptions to individual safety monitoring. Here we show that automatic speech recognition is feasible in psychotherapy, but further improvements in accuracy are needed before widespread use. Our HIPAA-compliant automatic speech recognition system demonstrated a transcription word error rate of 25%. For depression-related utterances, sensitivity was 80% and positive predictive value was 83%. For clinician-identified harm-related sentences, the word error rate was 34%. These results suggest that automatic speech recognition may support understanding of language patterns and subgroup variation in existing treatments but may not be ready for individual-level safety surveillance. |
format |
article |
author |
Adam S. Miner Albert Haque Jason A. Fries Scott L. Fleming Denise E. Wilfley G. Terence Wilson Arnold Milstein Dan Jurafsky Bruce A. Arnow W. Stewart Agras Li Fei-Fei Nigam H. Shah |
author_facet |
Adam S. Miner Albert Haque Jason A. Fries Scott L. Fleming Denise E. Wilfley G. Terence Wilson Arnold Milstein Dan Jurafsky Bruce A. Arnow W. Stewart Agras Li Fei-Fei Nigam H. Shah |
author_sort |
Adam S. Miner |
title |
Assessing the accuracy of automatic speech recognition for psychotherapy |
title_short |
Assessing the accuracy of automatic speech recognition for psychotherapy |
title_full |
Assessing the accuracy of automatic speech recognition for psychotherapy |
title_fullStr |
Assessing the accuracy of automatic speech recognition for psychotherapy |
title_full_unstemmed |
Assessing the accuracy of automatic speech recognition for psychotherapy |
title_sort |
assessing the accuracy of automatic speech recognition for psychotherapy |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/18d9cddcaf5d45d09a077f644a1611a5 |
work_keys_str_mv |
AT adamsminer assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT alberthaque assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT jasonafries assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT scottlfleming assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT deniseewilfley assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT gterencewilson assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT arnoldmilstein assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT danjurafsky assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT bruceaarnow assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT wstewartagras assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT lifeifei assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy AT nigamhshah assessingtheaccuracyofautomaticspeechrecognitionforpsychotherapy |
_version_ |
1718379271294025728 |