Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network

Manual postprocessing of computed tomography angiography (CTA) images is extremely labor intensive and error prone. Here, the authors propose an artificial intelligence reconstruction system that can automatically achieve CTA reconstruction in healthcare services.

Guardado en:
Detalles Bibliográficos
Autores principales: Fan Fu, Jianyong Wei, Miao Zhang, Fan Yu, Yueting Xiao, Dongdong Rong, Yi Shan, Yan Li, Cheng Zhao, Fangzhou Liao, Zhenghan Yang, Yuehua Li, Yingmin Chen, Ximing Wang, Jie Lu
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
Q
Acceso en línea:https://doaj.org/article/18ee8e0a573c47d28d028344572ab4f2
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:18ee8e0a573c47d28d028344572ab4f2
record_format dspace
spelling oai:doaj.org-article:18ee8e0a573c47d28d028344572ab4f22021-12-02T18:14:16ZRapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network10.1038/s41467-020-18606-22041-1723https://doaj.org/article/18ee8e0a573c47d28d028344572ab4f22020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18606-2https://doaj.org/toc/2041-1723Manual postprocessing of computed tomography angiography (CTA) images is extremely labor intensive and error prone. Here, the authors propose an artificial intelligence reconstruction system that can automatically achieve CTA reconstruction in healthcare services.Fan FuJianyong WeiMiao ZhangFan YuYueting XiaoDongdong RongYi ShanYan LiCheng ZhaoFangzhou LiaoZhenghan YangYuehua LiYingmin ChenXiming WangJie LuNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Fan Fu
Jianyong Wei
Miao Zhang
Fan Yu
Yueting Xiao
Dongdong Rong
Yi Shan
Yan Li
Cheng Zhao
Fangzhou Liao
Zhenghan Yang
Yuehua Li
Yingmin Chen
Ximing Wang
Jie Lu
Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
description Manual postprocessing of computed tomography angiography (CTA) images is extremely labor intensive and error prone. Here, the authors propose an artificial intelligence reconstruction system that can automatically achieve CTA reconstruction in healthcare services.
format article
author Fan Fu
Jianyong Wei
Miao Zhang
Fan Yu
Yueting Xiao
Dongdong Rong
Yi Shan
Yan Li
Cheng Zhao
Fangzhou Liao
Zhenghan Yang
Yuehua Li
Yingmin Chen
Ximing Wang
Jie Lu
author_facet Fan Fu
Jianyong Wei
Miao Zhang
Fan Yu
Yueting Xiao
Dongdong Rong
Yi Shan
Yan Li
Cheng Zhao
Fangzhou Liao
Zhenghan Yang
Yuehua Li
Yingmin Chen
Ximing Wang
Jie Lu
author_sort Fan Fu
title Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
title_short Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
title_full Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
title_fullStr Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
title_full_unstemmed Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
title_sort rapid vessel segmentation and reconstruction of head and neck angiograms using 3d convolutional neural network
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/18ee8e0a573c47d28d028344572ab4f2
work_keys_str_mv AT fanfu rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT jianyongwei rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT miaozhang rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT fanyu rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT yuetingxiao rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT dongdongrong rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT yishan rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT yanli rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT chengzhao rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT fangzhouliao rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT zhenghanyang rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT yuehuali rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT yingminchen rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT ximingwang rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
AT jielu rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork
_version_ 1718378378364452864