Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
Manual postprocessing of computed tomography angiography (CTA) images is extremely labor intensive and error prone. Here, the authors propose an artificial intelligence reconstruction system that can automatically achieve CTA reconstruction in healthcare services.
Guardado en:
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/18ee8e0a573c47d28d028344572ab4f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:18ee8e0a573c47d28d028344572ab4f2 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:18ee8e0a573c47d28d028344572ab4f22021-12-02T18:14:16ZRapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network10.1038/s41467-020-18606-22041-1723https://doaj.org/article/18ee8e0a573c47d28d028344572ab4f22020-09-01T00:00:00Zhttps://doi.org/10.1038/s41467-020-18606-2https://doaj.org/toc/2041-1723Manual postprocessing of computed tomography angiography (CTA) images is extremely labor intensive and error prone. Here, the authors propose an artificial intelligence reconstruction system that can automatically achieve CTA reconstruction in healthcare services.Fan FuJianyong WeiMiao ZhangFan YuYueting XiaoDongdong RongYi ShanYan LiCheng ZhaoFangzhou LiaoZhenghan YangYuehua LiYingmin ChenXiming WangJie LuNature PortfolioarticleScienceQENNature Communications, Vol 11, Iss 1, Pp 1-12 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Fan Fu Jianyong Wei Miao Zhang Fan Yu Yueting Xiao Dongdong Rong Yi Shan Yan Li Cheng Zhao Fangzhou Liao Zhenghan Yang Yuehua Li Yingmin Chen Ximing Wang Jie Lu Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network |
description |
Manual postprocessing of computed tomography angiography (CTA) images is extremely labor intensive and error prone. Here, the authors propose an artificial intelligence reconstruction system that can automatically achieve CTA reconstruction in healthcare services. |
format |
article |
author |
Fan Fu Jianyong Wei Miao Zhang Fan Yu Yueting Xiao Dongdong Rong Yi Shan Yan Li Cheng Zhao Fangzhou Liao Zhenghan Yang Yuehua Li Yingmin Chen Ximing Wang Jie Lu |
author_facet |
Fan Fu Jianyong Wei Miao Zhang Fan Yu Yueting Xiao Dongdong Rong Yi Shan Yan Li Cheng Zhao Fangzhou Liao Zhenghan Yang Yuehua Li Yingmin Chen Ximing Wang Jie Lu |
author_sort |
Fan Fu |
title |
Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network |
title_short |
Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network |
title_full |
Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network |
title_fullStr |
Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network |
title_full_unstemmed |
Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network |
title_sort |
rapid vessel segmentation and reconstruction of head and neck angiograms using 3d convolutional neural network |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/18ee8e0a573c47d28d028344572ab4f2 |
work_keys_str_mv |
AT fanfu rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT jianyongwei rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT miaozhang rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT fanyu rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT yuetingxiao rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT dongdongrong rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT yishan rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT yanli rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT chengzhao rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT fangzhouliao rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT zhenghanyang rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT yuehuali rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT yingminchen rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT ximingwang rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork AT jielu rapidvesselsegmentationandreconstructionofheadandneckangiogramsusing3dconvolutionalneuralnetwork |
_version_ |
1718378378364452864 |