Rapid vessel segmentation and reconstruction of head and neck angiograms using 3D convolutional neural network
Manual postprocessing of computed tomography angiography (CTA) images is extremely labor intensive and error prone. Here, the authors propose an artificial intelligence reconstruction system that can automatically achieve CTA reconstruction in healthcare services.
Guardado en:
Autores principales: | Fan Fu, Jianyong Wei, Miao Zhang, Fan Yu, Yueting Xiao, Dongdong Rong, Yi Shan, Yan Li, Cheng Zhao, Fangzhou Liao, Zhenghan Yang, Yuehua Li, Yingmin Chen, Ximing Wang, Jie Lu |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/18ee8e0a573c47d28d028344572ab4f2 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
HDC-Net: A hierarchical dilation convolutional network for retinal vessel segmentation.
por: Xiaolong Hu, et al.
Publicado: (2021) -
Transverse cervical vessels as a recipient site for microvascular reconstruction in vessel-depleted necks: a safe option
por: Adriano-Valerio Schettini, et al.
Publicado: (2021) -
Oro- and pharyngostoma. Relevant questions in head and neck reconstructive surgery
por: S.Y. Karp
Publicado: (2016) -
AngioNet: a convolutional neural network for vessel segmentation in X-ray angiography
por: Kritika Iyer, et al.
Publicado: (2021) -
Clinical consequences of head and neck free-flap reconstructions in the DM population
por: Ting-Han Chiu, et al.
Publicado: (2021)