In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases

Mona Moniri,1,2 Amin Boroumand Moghaddam,1,2 Susan Azizi,1 Raha Abdul Rahim,3 Saad Wan Zuhainis,4,5 Mohammad Navaderi,6,7 Rosfarizan Mohamad1,5 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malays...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Moniri M, Boroumand Moghaddam A, Azizi S, Abdul Rahim R, Zuhainis SW, Navaderi M, Mohamad R
Formato: article
Lenguaje:EN
Publicado: Dove Medical Press 2018
Materias:
Acceso en línea:https://doaj.org/article/18fe08c25fa14192a30783b0e4eb4044
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:18fe08c25fa14192a30783b0e4eb4044
record_format dspace
institution DOAJ
collection DOAJ
language EN
topic Bioinformatics study
Wound healing
Bacterial nanocellulose
Ag-NPs
Green synthesis
Citrullus colocynthis
Gene expression.
Medicine (General)
R5-920
spellingShingle Bioinformatics study
Wound healing
Bacterial nanocellulose
Ag-NPs
Green synthesis
Citrullus colocynthis
Gene expression.
Medicine (General)
R5-920
Moniri M
Boroumand Moghaddam A
Azizi S
Abdul Rahim R
Zuhainis SW
Navaderi M
Mohamad R
In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases
description Mona Moniri,1,2 Amin Boroumand Moghaddam,1,2 Susan Azizi,1 Raha Abdul Rahim,3 Saad Wan Zuhainis,4,5 Mohammad Navaderi,6,7 Rosfarizan Mohamad1,5 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Young Researcher and Elite Club, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran; 3Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 4Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 5Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 6Young Research and Elite Club, Parand Branch, Islamic Azad University, Parand, Iran; 7Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran Background: In recent years, bacterial nanocellulose (BNC) based nanocomposites have been developed to promote healing property and antibacterial activity of BNC wound dressing. Molecular study can help to better understanding about interaction of genes and pathways involved in healing progression. Objectives: The aim of this study was to prepare bacterial nanocellulose/silver (BNC/Ag) nanocomposite films as ecofriendly wound dressing in order to assess their physical, cytotoxicity and antimicrobial properties. The in vitro molecular study was performed to evaluate expression of genes involved in healing of wounds after treatment with BNC/Ag biofilms. Study design, materials, and methods: Silver nanoparticles were formed by using Citrullus colocynthis extract within new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Besides, swelling property and Ag release profile of the nanocomposites were studied. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was studied. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR. Results: Spherical silver nanoparticles with particle size ranging from 20 to 50 nm were synthesized and impregnated within the structure of BNC. The resulting nanocomposites showed significant antibacterial activities with inhibition zones ranging from 7±0.25 to 16.24±0.09 mm against skin pathogenic bacteria. Moreover, it was compatible with human fibroblast cells (HDF) and could promote in vitro wound healing after 48h. Based on bioinformatics databases, the genes of TGF-β1, MMP2, MMP9, CTNNB1, Wnt4, hsa-miR-29b-3p and hsa-miR-29c-3p played important role in wound healing. The nanocomposites had an effect in expression of the genes in healing. Thus, the BNC/Ag nanocomposite can be used to heal wound in a short period and simple manner. Conclusion: This eco-friendly nanocomposite with excellent antibacterial activities and healing property confirming its utility as potential wound dressings. Keywords: bioinformatics study, wound healing, bacterial nanocellulose, molecular study, gene expression, Citrullus colocynthis
format article
author Moniri M
Boroumand Moghaddam A
Azizi S
Abdul Rahim R
Zuhainis SW
Navaderi M
Mohamad R
author_facet Moniri M
Boroumand Moghaddam A
Azizi S
Abdul Rahim R
Zuhainis SW
Navaderi M
Mohamad R
author_sort Moniri M
title In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases
title_short In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases
title_full In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases
title_fullStr In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases
title_full_unstemmed In vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases
title_sort in vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases
publisher Dove Medical Press
publishDate 2018
url https://doaj.org/article/18fe08c25fa14192a30783b0e4eb4044
work_keys_str_mv AT monirim invitromolecularstudyofwoundhealingusingbiosynthesizedbacteriananocellulosesilvernanocompositeassistedbybioinformaticsdatabases
AT boroumandmoghaddama invitromolecularstudyofwoundhealingusingbiosynthesizedbacteriananocellulosesilvernanocompositeassistedbybioinformaticsdatabases
AT azizis invitromolecularstudyofwoundhealingusingbiosynthesizedbacteriananocellulosesilvernanocompositeassistedbybioinformaticsdatabases
AT abdulrahimr invitromolecularstudyofwoundhealingusingbiosynthesizedbacteriananocellulosesilvernanocompositeassistedbybioinformaticsdatabases
AT zuhainissw invitromolecularstudyofwoundhealingusingbiosynthesizedbacteriananocellulosesilvernanocompositeassistedbybioinformaticsdatabases
AT navaderim invitromolecularstudyofwoundhealingusingbiosynthesizedbacteriananocellulosesilvernanocompositeassistedbybioinformaticsdatabases
AT mohamadr invitromolecularstudyofwoundhealingusingbiosynthesizedbacteriananocellulosesilvernanocompositeassistedbybioinformaticsdatabases
_version_ 1718402147017555968
spelling oai:doaj.org-article:18fe08c25fa14192a30783b0e4eb40442021-12-02T02:44:52ZIn vitro molecular study of wound healing using biosynthesized bacteria nanocellulose/silver nanocomposite assisted by bioinformatics databases1178-2013https://doaj.org/article/18fe08c25fa14192a30783b0e4eb40442018-09-01T00:00:00Zhttps://www.dovepress.com/in-vitro-molecular-study-of-wound-healing-using-biosynthesized-bacteri-peer-reviewed-article-IJNhttps://doaj.org/toc/1178-2013Mona Moniri,1,2 Amin Boroumand Moghaddam,1,2 Susan Azizi,1 Raha Abdul Rahim,3 Saad Wan Zuhainis,4,5 Mohammad Navaderi,6,7 Rosfarizan Mohamad1,5 1Department of Bioprocess Technology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 2Young Researcher and Elite Club, Sabzevar Branch, Islamic Azad University, Sabzevar, Iran; 3Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 4Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 5Institute of Tropical Forestry and Forest Products, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia; 6Young Research and Elite Club, Parand Branch, Islamic Azad University, Parand, Iran; 7Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran Background: In recent years, bacterial nanocellulose (BNC) based nanocomposites have been developed to promote healing property and antibacterial activity of BNC wound dressing. Molecular study can help to better understanding about interaction of genes and pathways involved in healing progression. Objectives: The aim of this study was to prepare bacterial nanocellulose/silver (BNC/Ag) nanocomposite films as ecofriendly wound dressing in order to assess their physical, cytotoxicity and antimicrobial properties. The in vitro molecular study was performed to evaluate expression of genes involved in healing of wounds after treatment with BNC/Ag biofilms. Study design, materials, and methods: Silver nanoparticles were formed by using Citrullus colocynthis extract within new isolated bacterial nanocellulose (BNC) RM1. The nanocomposites were characterized using X-ray diffraction, Fourier transform infrared, and field emission scanning electron microscopy. Besides, swelling property and Ag release profile of the nanocomposites were studied. The ability of nanocomposites to promote wound healing of human dermal fibroblast cells in vitro was studied. Bioinformatics databases were used to identify genes with important healing effect. Key genes which interfered with healing were studied by quantitative real time PCR. Results: Spherical silver nanoparticles with particle size ranging from 20 to 50 nm were synthesized and impregnated within the structure of BNC. The resulting nanocomposites showed significant antibacterial activities with inhibition zones ranging from 7±0.25 to 16.24±0.09 mm against skin pathogenic bacteria. Moreover, it was compatible with human fibroblast cells (HDF) and could promote in vitro wound healing after 48h. Based on bioinformatics databases, the genes of TGF-β1, MMP2, MMP9, CTNNB1, Wnt4, hsa-miR-29b-3p and hsa-miR-29c-3p played important role in wound healing. The nanocomposites had an effect in expression of the genes in healing. Thus, the BNC/Ag nanocomposite can be used to heal wound in a short period and simple manner. Conclusion: This eco-friendly nanocomposite with excellent antibacterial activities and healing property confirming its utility as potential wound dressings. Keywords: bioinformatics study, wound healing, bacterial nanocellulose, molecular study, gene expression, Citrullus colocynthisMoniri MBoroumand Moghaddam AAzizi SAbdul Rahim RZuhainis SWNavaderi MMohamad RDove Medical PressarticleBioinformatics studyWound healingBacterial nanocelluloseAg-NPsGreen synthesisCitrullus colocynthisGene expression.Medicine (General)R5-920ENInternational Journal of Nanomedicine, Vol Volume 13, Pp 5097-5112 (2018)