Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo

Abstract Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Zsolt Szabó, László Héja, Gergely Szalay, Orsolya Kékesi, András Füredi, Kornélia Szebényi, Árpád Dobolyi, Tamás I. Orbán, Orsolya Kolacsek, Tamás Tompa, Zsombor Miskolczy, László Biczók, Balázs Rózsa, Balázs Sarkadi, Julianna Kardos
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1921ccf7c5df4463833ab0d18cec794a
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1921ccf7c5df4463833ab0d18cec794a
record_format dspace
spelling oai:doaj.org-article:1921ccf7c5df4463833ab0d18cec794a2021-12-02T11:52:15ZExtensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo10.1038/s41598-017-06073-72045-2322https://doaj.org/article/1921ccf7c5df4463833ab0d18cec794a2017-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-017-06073-7https://doaj.org/toc/2045-2322Abstract Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation.Zsolt SzabóLászló HéjaGergely SzalayOrsolya KékesiAndrás FürediKornélia SzebényiÁrpád DobolyiTamás I. OrbánOrsolya KolacsekTamás TompaZsombor MiskolczyLászló BiczókBalázs RózsaBalázs SarkadiJulianna KardosNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 7, Iss 1, Pp 1-18 (2017)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Zsolt Szabó
László Héja
Gergely Szalay
Orsolya Kékesi
András Füredi
Kornélia Szebényi
Árpád Dobolyi
Tamás I. Orbán
Orsolya Kolacsek
Tamás Tompa
Zsombor Miskolczy
László Biczók
Balázs Rózsa
Balázs Sarkadi
Julianna Kardos
Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo
description Abstract Slow wave activity (SWA) is a characteristic brain oscillation in sleep and quiet wakefulness. Although the cell types contributing to SWA genesis are not yet identified, the principal role of neurons in the emergence of this essential cognitive mechanism has not been questioned. To address the possibility of astrocytic involvement in SWA, we used a transgenic rat line expressing a calcium sensitive fluorescent protein in both astrocytes and interneurons and simultaneously imaged astrocytic and neuronal activity in vivo. Here we demonstrate, for the first time, that the astrocyte network display synchronized recurrent activity in vivo coupled to UP states measured by field recording and neuronal calcium imaging. Furthermore, we present evidence that extensive synchronization of the astrocytic network precedes the spatial build-up of neuronal synchronization. The earlier extensive recruitment of astrocytes in the synchronized activity is reinforced by the observation that neurons surrounded by active astrocytes are more likely to join SWA, suggesting causality. Further supporting this notion, we demonstrate that blockade of astrocytic gap junctional communication or inhibition of astrocytic Ca2+ transients reduces the ratio of both astrocytes and neurons involved in SWA. These in vivo findings conclusively suggest a causal role of the astrocytic syncytium in SWA generation.
format article
author Zsolt Szabó
László Héja
Gergely Szalay
Orsolya Kékesi
András Füredi
Kornélia Szebényi
Árpád Dobolyi
Tamás I. Orbán
Orsolya Kolacsek
Tamás Tompa
Zsombor Miskolczy
László Biczók
Balázs Rózsa
Balázs Sarkadi
Julianna Kardos
author_facet Zsolt Szabó
László Héja
Gergely Szalay
Orsolya Kékesi
András Füredi
Kornélia Szebényi
Árpád Dobolyi
Tamás I. Orbán
Orsolya Kolacsek
Tamás Tompa
Zsombor Miskolczy
László Biczók
Balázs Rózsa
Balázs Sarkadi
Julianna Kardos
author_sort Zsolt Szabó
title Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo
title_short Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo
title_full Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo
title_fullStr Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo
title_full_unstemmed Extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo
title_sort extensive astrocyte synchronization advances neuronal coupling in slow wave activity in vivo
publisher Nature Portfolio
publishDate 2017
url https://doaj.org/article/1921ccf7c5df4463833ab0d18cec794a
work_keys_str_mv AT zsoltszabo extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT laszloheja extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT gergelyszalay extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT orsolyakekesi extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT andrasfuredi extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT korneliaszebenyi extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT arpaddobolyi extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT tamasiorban extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT orsolyakolacsek extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT tamastompa extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT zsombormiskolczy extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT laszlobiczok extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT balazsrozsa extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT balazssarkadi extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
AT juliannakardos extensiveastrocytesynchronizationadvancesneuronalcouplinginslowwaveactivityinvivo
_version_ 1718395089880875008