Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth

ABSTRACT The dynamics and significance of aerosol transmission of respiratory viruses are still controversial, for the major reasons that virus aerosols are inefficiently collected by commonly used air samplers and that the collected viruses are inactivated by the collection method. Without knowledg...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Maohua Pan, Tania S. Bonny, Julia Loeb, Xiao Jiang, John A. Lednicky, Arantzazu Eiguren-Fernandez, Susanne Hering, Z. Hugh Fan, Chang-Yu Wu
Formato: article
Lenguaje:EN
Publicado: American Society for Microbiology 2017
Materias:
Acceso en línea:https://doaj.org/article/192c275a3eb148f99b5219012d7d2aae
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:192c275a3eb148f99b5219012d7d2aae
record_format dspace
spelling oai:doaj.org-article:192c275a3eb148f99b5219012d7d2aae2021-11-15T15:22:05ZCollection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth10.1128/mSphere.00251-172379-5042https://doaj.org/article/192c275a3eb148f99b5219012d7d2aae2017-10-01T00:00:00Zhttps://journals.asm.org/doi/10.1128/mSphere.00251-17https://doaj.org/toc/2379-5042ABSTRACT The dynamics and significance of aerosol transmission of respiratory viruses are still controversial, for the major reasons that virus aerosols are inefficiently collected by commonly used air samplers and that the collected viruses are inactivated by the collection method. Without knowledge of virus viability, infection risk analyses lack accuracy. This pilot study was performed to (i) determine whether infectious (viable) respiratory viruses in aerosols could be collected from air in a real world environment by the viable virus aerosol sampler (VIVAS), (ii) compare and contrast the efficacy of the standard bioaerosol sampler, the BioSampler, with that of the VIVAS for the collection of airborne viruses in a real world environment, and (iii) gain insights for the use of the VIVAS for respiratory virus sampling. The VIVAS operates via a water vapor condensation process to enlarge aerosolized virus particles to facilitate their capture. A variety of viable human respiratory viruses, including influenza A H1N1 and H3N2 viruses and influenza B viruses, were collected by the VIVAS located at least 2 m from seated patients, during a late-onset 2016 influenza virus outbreak. Whereas the BioSampler when operated following our optimized parameters also collected virus aerosols, it was nevertheless overall less successful based on a lower frequency of virus isolation in most cases. This side-by-side comparison highlights some limitations of past studies based on impingement-based sampling, which may have generated false-negative results due to either poor collection efficiency and/or virus inactivation due to the collection process. IMPORTANCE The significance of virus aerosols in the natural transmission of respiratory diseases has been a contentious issue, primarily because it is difficult to collect or sample virus aerosols using currently available air sampling devices. We tested a new air sampler based on water vapor condensation for efficient sampling of viable airborne respiratory viruses in a student health care center as a model of a real world environment. The new sampler outperformed the industry standard device (the SKC BioSampler) in the collection of natural virus aerosols and in maintaining virus viability. These results using the VIVAS indicate that respiratory virus aerosols are more prevalent and potentially pose a greater inhalation biohazard than previously thought. The VIVAS thus appears to be a useful apparatus for microbiology air quality tests related to the detection of viable airborne viruses.Maohua PanTania S. BonnyJulia LoebXiao JiangJohn A. LednickyArantzazu Eiguren-FernandezSusanne HeringZ. Hugh FanChang-Yu WuAmerican Society for Microbiologyarticleinfectious agentinfirmarysamplingtransmissionvirus aerosolMicrobiologyQR1-502ENmSphere, Vol 2, Iss 5 (2017)
institution DOAJ
collection DOAJ
language EN
topic infectious agent
infirmary
sampling
transmission
virus aerosol
Microbiology
QR1-502
spellingShingle infectious agent
infirmary
sampling
transmission
virus aerosol
Microbiology
QR1-502
Maohua Pan
Tania S. Bonny
Julia Loeb
Xiao Jiang
John A. Lednicky
Arantzazu Eiguren-Fernandez
Susanne Hering
Z. Hugh Fan
Chang-Yu Wu
Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth
description ABSTRACT The dynamics and significance of aerosol transmission of respiratory viruses are still controversial, for the major reasons that virus aerosols are inefficiently collected by commonly used air samplers and that the collected viruses are inactivated by the collection method. Without knowledge of virus viability, infection risk analyses lack accuracy. This pilot study was performed to (i) determine whether infectious (viable) respiratory viruses in aerosols could be collected from air in a real world environment by the viable virus aerosol sampler (VIVAS), (ii) compare and contrast the efficacy of the standard bioaerosol sampler, the BioSampler, with that of the VIVAS for the collection of airborne viruses in a real world environment, and (iii) gain insights for the use of the VIVAS for respiratory virus sampling. The VIVAS operates via a water vapor condensation process to enlarge aerosolized virus particles to facilitate their capture. A variety of viable human respiratory viruses, including influenza A H1N1 and H3N2 viruses and influenza B viruses, were collected by the VIVAS located at least 2 m from seated patients, during a late-onset 2016 influenza virus outbreak. Whereas the BioSampler when operated following our optimized parameters also collected virus aerosols, it was nevertheless overall less successful based on a lower frequency of virus isolation in most cases. This side-by-side comparison highlights some limitations of past studies based on impingement-based sampling, which may have generated false-negative results due to either poor collection efficiency and/or virus inactivation due to the collection process. IMPORTANCE The significance of virus aerosols in the natural transmission of respiratory diseases has been a contentious issue, primarily because it is difficult to collect or sample virus aerosols using currently available air sampling devices. We tested a new air sampler based on water vapor condensation for efficient sampling of viable airborne respiratory viruses in a student health care center as a model of a real world environment. The new sampler outperformed the industry standard device (the SKC BioSampler) in the collection of natural virus aerosols and in maintaining virus viability. These results using the VIVAS indicate that respiratory virus aerosols are more prevalent and potentially pose a greater inhalation biohazard than previously thought. The VIVAS thus appears to be a useful apparatus for microbiology air quality tests related to the detection of viable airborne viruses.
format article
author Maohua Pan
Tania S. Bonny
Julia Loeb
Xiao Jiang
John A. Lednicky
Arantzazu Eiguren-Fernandez
Susanne Hering
Z. Hugh Fan
Chang-Yu Wu
author_facet Maohua Pan
Tania S. Bonny
Julia Loeb
Xiao Jiang
John A. Lednicky
Arantzazu Eiguren-Fernandez
Susanne Hering
Z. Hugh Fan
Chang-Yu Wu
author_sort Maohua Pan
title Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth
title_short Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth
title_full Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth
title_fullStr Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth
title_full_unstemmed Collection of Viable Aerosolized Influenza Virus and Other Respiratory Viruses in a Student Health Care Center through Water-Based Condensation Growth
title_sort collection of viable aerosolized influenza virus and other respiratory viruses in a student health care center through water-based condensation growth
publisher American Society for Microbiology
publishDate 2017
url https://doaj.org/article/192c275a3eb148f99b5219012d7d2aae
work_keys_str_mv AT maohuapan collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
AT taniasbonny collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
AT julialoeb collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
AT xiaojiang collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
AT johnalednicky collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
AT arantzazueigurenfernandez collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
AT susannehering collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
AT zhughfan collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
AT changyuwu collectionofviableaerosolizedinfluenzavirusandotherrespiratoryvirusesinastudenthealthcarecenterthroughwaterbasedcondensationgrowth
_version_ 1718428056310251520