Randomly polarised beam produced by magnetooptically Q-switched laser

Abstract Diode-pumped solid-state micro lasers are compact (centimetre-scale), highly stable, and efficient. Previously, we reported Q-switched lasers incorporating rare-earth substituted iron garnet (RIG) film. Here, the first demonstration of the magnetooptical (MO) Q-switch in an Nd:YAG laser cav...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Ryohei Morimoto, Taichi Goto, Takunori Taira, John Pritchard, Mani Mina, Hiroyuki Takagi, Yuichi Nakamura, Pang Boey Lim, Hironaga Uchida, Mitsuteru Inoue
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2017
Materias:
R
Q
Acceso en línea:https://doaj.org/article/19314035d1cd45d6a70e804221639ed1
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:Abstract Diode-pumped solid-state micro lasers are compact (centimetre-scale), highly stable, and efficient. Previously, we reported Q-switched lasers incorporating rare-earth substituted iron garnet (RIG) film. Here, the first demonstration of the magnetooptical (MO) Q-switch in an Nd:YAG laser cavity is performed. We fabricate a quasi-continuous-wave (QCW) diode-pumped Nd:YAG laser cavity, which is shortened to 10 mm in length and which contains an RIG film and a pair of small coils. This cavity yields a 1,064.58-nm-wavelength pulse with 25-ns duration and 1.1-kW peak power at a 1-kHz repetition ratio. Further, the polarisation state is random, due to the isotropic crystal structure of Nd:YAG and the fact that the MO Q-switch incorporating the RIG film does not require the presence of polarisers in the cavity. This is also the first report of an MO Q-switch producing random polarisation.