Capturing single-cell heterogeneity via data fusion improves image-based profiling

A challenge with single-cell resolution methods is that cell heterogeneity should be captured while allowing for comparisons between populations. Here the authors fuse information from the dispersion profiles with the average profiles at the level of profiles’ similarity matrices for single cell ima...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mohammad H. Rohban, Hamdah S. Abbasi, Shantanu Singh, Anne E. Carpenter
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/1960879fb520478bb38c90d85f45b3ae
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1960879fb520478bb38c90d85f45b3ae
record_format dspace
spelling oai:doaj.org-article:1960879fb520478bb38c90d85f45b3ae2021-12-02T15:35:49ZCapturing single-cell heterogeneity via data fusion improves image-based profiling10.1038/s41467-019-10154-82041-1723https://doaj.org/article/1960879fb520478bb38c90d85f45b3ae2019-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10154-8https://doaj.org/toc/2041-1723A challenge with single-cell resolution methods is that cell heterogeneity should be captured while allowing for comparisons between populations. Here the authors fuse information from the dispersion profiles with the average profiles at the level of profiles’ similarity matrices for single cell imaging data.Mohammad H. RohbanHamdah S. AbbasiShantanu SinghAnne E. CarpenterNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-6 (2019)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mohammad H. Rohban
Hamdah S. Abbasi
Shantanu Singh
Anne E. Carpenter
Capturing single-cell heterogeneity via data fusion improves image-based profiling
description A challenge with single-cell resolution methods is that cell heterogeneity should be captured while allowing for comparisons between populations. Here the authors fuse information from the dispersion profiles with the average profiles at the level of profiles’ similarity matrices for single cell imaging data.
format article
author Mohammad H. Rohban
Hamdah S. Abbasi
Shantanu Singh
Anne E. Carpenter
author_facet Mohammad H. Rohban
Hamdah S. Abbasi
Shantanu Singh
Anne E. Carpenter
author_sort Mohammad H. Rohban
title Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_short Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_full Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_fullStr Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_full_unstemmed Capturing single-cell heterogeneity via data fusion improves image-based profiling
title_sort capturing single-cell heterogeneity via data fusion improves image-based profiling
publisher Nature Portfolio
publishDate 2019
url https://doaj.org/article/1960879fb520478bb38c90d85f45b3ae
work_keys_str_mv AT mohammadhrohban capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling
AT hamdahsabbasi capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling
AT shantanusingh capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling
AT anneecarpenter capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling
_version_ 1718386397933469696