Capturing single-cell heterogeneity via data fusion improves image-based profiling
A challenge with single-cell resolution methods is that cell heterogeneity should be captured while allowing for comparisons between populations. Here the authors fuse information from the dispersion profiles with the average profiles at the level of profiles’ similarity matrices for single cell ima...
Guardado en:
Autores principales: | , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1960879fb520478bb38c90d85f45b3ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1960879fb520478bb38c90d85f45b3ae |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1960879fb520478bb38c90d85f45b3ae2021-12-02T15:35:49ZCapturing single-cell heterogeneity via data fusion improves image-based profiling10.1038/s41467-019-10154-82041-1723https://doaj.org/article/1960879fb520478bb38c90d85f45b3ae2019-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-019-10154-8https://doaj.org/toc/2041-1723A challenge with single-cell resolution methods is that cell heterogeneity should be captured while allowing for comparisons between populations. Here the authors fuse information from the dispersion profiles with the average profiles at the level of profiles’ similarity matrices for single cell imaging data.Mohammad H. RohbanHamdah S. AbbasiShantanu SinghAnne E. CarpenterNature PortfolioarticleScienceQENNature Communications, Vol 10, Iss 1, Pp 1-6 (2019) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Mohammad H. Rohban Hamdah S. Abbasi Shantanu Singh Anne E. Carpenter Capturing single-cell heterogeneity via data fusion improves image-based profiling |
description |
A challenge with single-cell resolution methods is that cell heterogeneity should be captured while allowing for comparisons between populations. Here the authors fuse information from the dispersion profiles with the average profiles at the level of profiles’ similarity matrices for single cell imaging data. |
format |
article |
author |
Mohammad H. Rohban Hamdah S. Abbasi Shantanu Singh Anne E. Carpenter |
author_facet |
Mohammad H. Rohban Hamdah S. Abbasi Shantanu Singh Anne E. Carpenter |
author_sort |
Mohammad H. Rohban |
title |
Capturing single-cell heterogeneity via data fusion improves image-based profiling |
title_short |
Capturing single-cell heterogeneity via data fusion improves image-based profiling |
title_full |
Capturing single-cell heterogeneity via data fusion improves image-based profiling |
title_fullStr |
Capturing single-cell heterogeneity via data fusion improves image-based profiling |
title_full_unstemmed |
Capturing single-cell heterogeneity via data fusion improves image-based profiling |
title_sort |
capturing single-cell heterogeneity via data fusion improves image-based profiling |
publisher |
Nature Portfolio |
publishDate |
2019 |
url |
https://doaj.org/article/1960879fb520478bb38c90d85f45b3ae |
work_keys_str_mv |
AT mohammadhrohban capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling AT hamdahsabbasi capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling AT shantanusingh capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling AT anneecarpenter capturingsinglecellheterogeneityviadatafusionimprovesimagebasedprofiling |
_version_ |
1718386397933469696 |