Capturing single-cell heterogeneity via data fusion improves image-based profiling
A challenge with single-cell resolution methods is that cell heterogeneity should be captured while allowing for comparisons between populations. Here the authors fuse information from the dispersion profiles with the average profiles at the level of profiles’ similarity matrices for single cell ima...
Guardado en:
Autores principales: | Mohammad H. Rohban, Hamdah S. Abbasi, Shantanu Singh, Anne E. Carpenter |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2019
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1960879fb520478bb38c90d85f45b3ae |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Compressive spectral image fusion via a single aperture high throughput imaging system
por: Hoover Rueda-Chacon, et al.
Publicado: (2021) - International journal of image and data fusion
-
Resolving cell state in iPSC-derived human neural samples with multiplexed fluorescence imaging
por: Martin L. Tomov, et al.
Publicado: (2021) -
A general framework of multiple coordinative data fusion modules for real-time and heterogeneous data sources
por: Kashinath Shafiza Ariffin, et al.
Publicado: (2021) -
Molecular profiling of single organelles for quantitative analysis of cellular heterogeneity
por: Andrey N. Kuzmin, et al.
Publicado: (2017)