Top influencers can be identified universally by combining classical centralities
Abstract Information flow, opinion, and epidemics spread over structured networks. When using node centrality indicators to predict which nodes will be among the top influencers or superspreaders, no single centrality is a consistently good ranker across networks. We show that statistical classifier...
Guardado en:
Autor principal: | Doina Bucur |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/19708cbb8fc8425c8894a545b74efcf3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Endodontic Microbiology: A Bibliometric Analysis of the Top 50 Classics
por: Mohmed Isaqali Karobari, et al.
Publicado: (2021) -
Genome-wide scan identifies loci associated with classical BSE occurrence.
por: Brenda M Murdoch, et al.
Publicado: (2011) -
Top-down influences of the medial olivocochlear efferent system in speech perception in noise.
por: Srikanta K Mishra, et al.
Publicado: (2014) -
Sample-based approach can outperform the classical dynamical analysis - experimental confirmation of the basin stability method
por: P. Brzeski, et al.
Publicado: (2017) -
Characterizing the interactions between classical and community-aware centrality measures in complex networks
por: Stephany Rajeh, et al.
Publicado: (2021)