A numerical study of fish adaption behaviors in complex environments with a deep reinforcement learning and immersed boundary–lattice Boltzmann method
Abstract Fish adaption behaviors in complex environments are of great importance in improving the performance of underwater vehicles. This work presents a numerical study of the adaption behaviors of self-propelled fish in complex environments by developing a numerical framework of deep learning and...
Guardado en:
Autores principales: | Yi Zhu, Fang-Bao Tian, John Young, James C. Liao, Joseph C. S. Lai |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1971caa667d44ea48ae7504e9a4e15da |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Numerical analysis of fluid flows in L-Shaped cavities using Lattice Boltzmann method
por: Sthavishtha R. Bhopalam, et al.
Publicado: (2020) -
Lattice Boltzmann modeling to explain volcano acoustic source
por: Federico Brogi, et al.
Publicado: (2018) -
Numerical Investigation of Pool Boiling Under Ocean Conditions with Lattice Boltzmann Simulation. Part Ⅰ: Heaving Condition
por: Qifan Zou, et al.
Publicado: (2021) -
Moving beds represented by immersed boundaries: numerical experiments using large eddy simulation
por: Alamy Filho,José Eduardo, et al.
Publicado: (2012) -
Lattice Boltzmann simulation of liquid falling on horizontal rectangular pillar arrays
por: Sugimoto Makoto, et al.
Publicado: (2021)