A numerical study of fish adaption behaviors in complex environments with a deep reinforcement learning and immersed boundary–lattice Boltzmann method

Abstract Fish adaption behaviors in complex environments are of great importance in improving the performance of underwater vehicles. This work presents a numerical study of the adaption behaviors of self-propelled fish in complex environments by developing a numerical framework of deep learning and...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Yi Zhu, Fang-Bao Tian, John Young, James C. Liao, Joseph C. S. Lai
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1971caa667d44ea48ae7504e9a4e15da
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

Ejemplares similares