Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions

Single-cell RNA-Seq allows us to observe snapshots of how biological systems change over time at cellular resolution. Here, the authors develop a generative framework that uses time-resolved single-cell data to model how cells change in physical time, including in response to perturbations.

Guardado en:
Detalles Bibliográficos
Autores principales: Grace Hui Ting Yeo, Sachit D. Saksena, David K. Gifford
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/197cf2be15834f71b3824cd58fa503a3
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:197cf2be15834f71b3824cd58fa503a3
record_format dspace
spelling oai:doaj.org-article:197cf2be15834f71b3824cd58fa503a32021-12-02T15:00:50ZGenerative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions10.1038/s41467-021-23518-w2041-1723https://doaj.org/article/197cf2be15834f71b3824cd58fa503a32021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23518-whttps://doaj.org/toc/2041-1723Single-cell RNA-Seq allows us to observe snapshots of how biological systems change over time at cellular resolution. Here, the authors develop a generative framework that uses time-resolved single-cell data to model how cells change in physical time, including in response to perturbations.Grace Hui Ting YeoSachit D. SaksenaDavid K. GiffordNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Grace Hui Ting Yeo
Sachit D. Saksena
David K. Gifford
Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
description Single-cell RNA-Seq allows us to observe snapshots of how biological systems change over time at cellular resolution. Here, the authors develop a generative framework that uses time-resolved single-cell data to model how cells change in physical time, including in response to perturbations.
format article
author Grace Hui Ting Yeo
Sachit D. Saksena
David K. Gifford
author_facet Grace Hui Ting Yeo
Sachit D. Saksena
David K. Gifford
author_sort Grace Hui Ting Yeo
title Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
title_short Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
title_full Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
title_fullStr Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
title_full_unstemmed Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
title_sort generative modeling of single-cell time series with prescient enables prediction of cell trajectories with interventions
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/197cf2be15834f71b3824cd58fa503a3
work_keys_str_mv AT gracehuitingyeo generativemodelingofsinglecelltimeserieswithprescientenablespredictionofcelltrajectorieswithinterventions
AT sachitdsaksena generativemodelingofsinglecelltimeserieswithprescientenablespredictionofcelltrajectorieswithinterventions
AT davidkgifford generativemodelingofsinglecelltimeserieswithprescientenablespredictionofcelltrajectorieswithinterventions
_version_ 1718389123815833600