Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
Single-cell RNA-Seq allows us to observe snapshots of how biological systems change over time at cellular resolution. Here, the authors develop a generative framework that uses time-resolved single-cell data to model how cells change in physical time, including in response to perturbations.
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/197cf2be15834f71b3824cd58fa503a3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:197cf2be15834f71b3824cd58fa503a3 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:197cf2be15834f71b3824cd58fa503a32021-12-02T15:00:50ZGenerative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions10.1038/s41467-021-23518-w2041-1723https://doaj.org/article/197cf2be15834f71b3824cd58fa503a32021-05-01T00:00:00Zhttps://doi.org/10.1038/s41467-021-23518-whttps://doaj.org/toc/2041-1723Single-cell RNA-Seq allows us to observe snapshots of how biological systems change over time at cellular resolution. Here, the authors develop a generative framework that uses time-resolved single-cell data to model how cells change in physical time, including in response to perturbations.Grace Hui Ting YeoSachit D. SaksenaDavid K. GiffordNature PortfolioarticleScienceQENNature Communications, Vol 12, Iss 1, Pp 1-12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Science Q |
spellingShingle |
Science Q Grace Hui Ting Yeo Sachit D. Saksena David K. Gifford Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions |
description |
Single-cell RNA-Seq allows us to observe snapshots of how biological systems change over time at cellular resolution. Here, the authors develop a generative framework that uses time-resolved single-cell data to model how cells change in physical time, including in response to perturbations. |
format |
article |
author |
Grace Hui Ting Yeo Sachit D. Saksena David K. Gifford |
author_facet |
Grace Hui Ting Yeo Sachit D. Saksena David K. Gifford |
author_sort |
Grace Hui Ting Yeo |
title |
Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions |
title_short |
Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions |
title_full |
Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions |
title_fullStr |
Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions |
title_full_unstemmed |
Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions |
title_sort |
generative modeling of single-cell time series with prescient enables prediction of cell trajectories with interventions |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/197cf2be15834f71b3824cd58fa503a3 |
work_keys_str_mv |
AT gracehuitingyeo generativemodelingofsinglecelltimeserieswithprescientenablespredictionofcelltrajectorieswithinterventions AT sachitdsaksena generativemodelingofsinglecelltimeserieswithprescientenablespredictionofcelltrajectorieswithinterventions AT davidkgifford generativemodelingofsinglecelltimeserieswithprescientenablespredictionofcelltrajectorieswithinterventions |
_version_ |
1718389123815833600 |