Generative modeling of single-cell time series with PRESCIENT enables prediction of cell trajectories with interventions
Single-cell RNA-Seq allows us to observe snapshots of how biological systems change over time at cellular resolution. Here, the authors develop a generative framework that uses time-resolved single-cell data to model how cells change in physical time, including in response to perturbations.
Guardado en:
Autores principales: | Grace Hui Ting Yeo, Sachit D. Saksena, David K. Gifford |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/197cf2be15834f71b3824cd58fa503a3 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Reconstructing cell cycle pseudo time-series via single-cell transcriptome data
por: Zehua Liu, et al.
Publicado: (2017) -
Reconstruction of complex single-cell trajectories using CellRouter
por: Edroaldo Lummertz da Rocha, et al.
Publicado: (2018) -
Detection of gene cis-regulatory element perturbations in single-cell transcriptomes.
por: Grace Hui Ting Yeo, et al.
Publicado: (2021) -
TCM visualizes trajectories and cell populations from single cell data
por: Wuming Gong, et al.
Publicado: (2018) -
Single-cell trajectories reconstruction, exploration and mapping of omics data with STREAM
por: Huidong Chen, et al.
Publicado: (2019)