A comparative study of evaluating missing value imputation methods in label-free proteomics
Abstract The presence of missing values (MVs) in label-free quantitative proteomics greatly reduces the completeness of data. Imputation has been widely utilized to handle MVs, and selection of the proper method is critical for the accuracy and reliability of imputation. Here we present a comparativ...
Guardado en:
Autores principales: | Liang Jin, Yingtao Bi, Chenqi Hu, Jun Qu, Shichen Shen, Xue Wang, Yu Tian |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/198d77c776934e20ab2d016e4f427453 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Kernel weighted least square approach for imputing missing values of metabolomics data
por: Nishith Kumar, et al.
Publicado: (2021) -
Missing Value Imputation of Time-Series Air-Quality Data via Deep Neural Networks
por: Taesung Kim, et al.
Publicado: (2021) -
Machine Learning for the Relationship of High-Energy Electron Flux between GEO and MEO with Application to Missing Values Imputation for Beidou MEO Data
por: Cui Ruifei, et al.
Publicado: (2021) -
Multiple imputation of maritime search and rescue data at multiple missing patterns.
por: Guobo Wang, et al.
Publicado: (2021) -
Contextual Imputation With Missing Sequence of EEG Signals Using Generative Adversarial Networks
por: Woonghee Lee, et al.
Publicado: (2021)