A machine learning framework for rapid forecasting and history matching in unconventional reservoirs

Abstract We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., t...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Shriram Srinivasan, Daniel O’Malley, Maruti K. Mudunuru, Matthew R. Sweeney, Jeffrey D. Hyman, Satish Karra, Luke Frash, J. William Carey, Michael R. Gross, George D. Guthrie, Timothy Carr, Liwei Li, Hari S. Viswanathan
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/19a3100ba9fc42afae2d745226851b22
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:19a3100ba9fc42afae2d745226851b22
record_format dspace
spelling oai:doaj.org-article:19a3100ba9fc42afae2d745226851b222021-11-08T10:48:43ZA machine learning framework for rapid forecasting and history matching in unconventional reservoirs10.1038/s41598-021-01023-w2045-2322https://doaj.org/article/19a3100ba9fc42afae2d745226851b222021-11-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-01023-whttps://doaj.org/toc/2045-2322Abstract We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., the time-frame for which the wells have been producing), and the significant computational expense of high-fidelity modeling. We do this by applying the machine-learning paradigm of transfer learning, where we combine fast, but less accurate reduced-order models with slow, but accurate high-fidelity models. We use the Patzek model (Proc Natl Acad Sci 11:19731–19736, https://doi.org/10.1073/pnas.1313380110 , 2013) as the reduced-order model to generate synthetic production data and supplement this data with synthetic production data obtained from high-fidelity discrete fracture network simulations of the site of interest. Our results demonstrate that training with low-fidelity models is not sufficient for accurate forecasting, but transfer learning is able to augment the knowledge and perform well once trained with the small set of results from the high-fidelity model. Such a physics-informed machine-learning (PIML) workflow, grounded in physics, is a viable candidate for real-time history matching and production forecasting in a fractured shale gas reservoir.Shriram SrinivasanDaniel O’MalleyMaruti K. MudunuruMatthew R. SweeneyJeffrey D. HymanSatish KarraLuke FrashJ. William CareyMichael R. GrossGeorge D. GuthrieTimothy CarrLiwei LiHari S. ViswanathanNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-15 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Shriram Srinivasan
Daniel O’Malley
Maruti K. Mudunuru
Matthew R. Sweeney
Jeffrey D. Hyman
Satish Karra
Luke Frash
J. William Carey
Michael R. Gross
George D. Guthrie
Timothy Carr
Liwei Li
Hari S. Viswanathan
A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
description Abstract We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., the time-frame for which the wells have been producing), and the significant computational expense of high-fidelity modeling. We do this by applying the machine-learning paradigm of transfer learning, where we combine fast, but less accurate reduced-order models with slow, but accurate high-fidelity models. We use the Patzek model (Proc Natl Acad Sci 11:19731–19736, https://doi.org/10.1073/pnas.1313380110 , 2013) as the reduced-order model to generate synthetic production data and supplement this data with synthetic production data obtained from high-fidelity discrete fracture network simulations of the site of interest. Our results demonstrate that training with low-fidelity models is not sufficient for accurate forecasting, but transfer learning is able to augment the knowledge and perform well once trained with the small set of results from the high-fidelity model. Such a physics-informed machine-learning (PIML) workflow, grounded in physics, is a viable candidate for real-time history matching and production forecasting in a fractured shale gas reservoir.
format article
author Shriram Srinivasan
Daniel O’Malley
Maruti K. Mudunuru
Matthew R. Sweeney
Jeffrey D. Hyman
Satish Karra
Luke Frash
J. William Carey
Michael R. Gross
George D. Guthrie
Timothy Carr
Liwei Li
Hari S. Viswanathan
author_facet Shriram Srinivasan
Daniel O’Malley
Maruti K. Mudunuru
Matthew R. Sweeney
Jeffrey D. Hyman
Satish Karra
Luke Frash
J. William Carey
Michael R. Gross
George D. Guthrie
Timothy Carr
Liwei Li
Hari S. Viswanathan
author_sort Shriram Srinivasan
title A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
title_short A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
title_full A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
title_fullStr A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
title_full_unstemmed A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
title_sort machine learning framework for rapid forecasting and history matching in unconventional reservoirs
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/19a3100ba9fc42afae2d745226851b22
work_keys_str_mv AT shriramsrinivasan amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT danielomalley amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT marutikmudunuru amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT matthewrsweeney amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT jeffreydhyman amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT satishkarra amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT lukefrash amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT jwilliamcarey amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT michaelrgross amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT georgedguthrie amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT timothycarr amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT liweili amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT harisviswanathan amachinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT shriramsrinivasan machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT danielomalley machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT marutikmudunuru machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT matthewrsweeney machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT jeffreydhyman machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT satishkarra machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT lukefrash machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT jwilliamcarey machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT michaelrgross machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT georgedguthrie machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT timothycarr machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT liweili machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
AT harisviswanathan machinelearningframeworkforrapidforecastingandhistorymatchinginunconventionalreservoirs
_version_ 1718442592574636032