A machine learning framework for rapid forecasting and history matching in unconventional reservoirs
Abstract We present a novel workflow for forecasting production in unconventional reservoirs using reduced-order models and machine-learning. Our physics-informed machine-learning workflow addresses the challenges to real-time reservoir management in unconventionals, namely the lack of data (i.e., t...
Guardado en:
Autores principales: | Shriram Srinivasan, Daniel O’Malley, Maruti K. Mudunuru, Matthew R. Sweeney, Jeffrey D. Hyman, Satish Karra, Luke Frash, J. William Carey, Michael R. Gross, George D. Guthrie, Timothy Carr, Liwei Li, Hari S. Viswanathan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/19a3100ba9fc42afae2d745226851b22 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
A Summary of “Petrophysics and Geochemistry of Unconventional Reservoirs”
por: Mikhail Spasennykh, et al.
Publicado: (2021) -
Transient Pressure Behavior of Complex Fracture Networks in Unconventional Reservoirs
por: Gou Feifei, et al.
Publicado: (2021) -
Insight into the Methods for Improving the Utilization Efficiency of Fracturing Liquid in Unconventional Reservoirs
por: Tianlu Xu, et al.
Publicado: (2021) -
Enhancing recovery and sensitivity studies in an unconventional tight gas condensate reservoir
por: Min Wang, et al.
Publicado: (2018) -
A Computational Scheme for Evaluating the Stress Field of Thermally and Pressure Induced Unconventional Reservoir
por: Yao Fu, et al.
Publicado: (2021)