Global labor flow network reveals the hierarchical organization and dynamics of geo-industrial clusters

There is a lack of systematic approaches to identify and analyze the hierarchical structure of geo-industrial clusters at the global scale. Here the authors use LinkedIn's employment history data to construct a global labor flow network from which they find that the resulting geo-industrial clu...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Jaehyuk Park, Ian B. Wood, Elise Jing, Azadeh Nematzadeh, Souvik Ghosh, Michael D. Conover, Yong-Yeol Ahn
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2019
Materias:
Q
Acceso en línea:https://doaj.org/article/19ac37b569f44c51953b1343772035bc
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:There is a lack of systematic approaches to identify and analyze the hierarchical structure of geo-industrial clusters at the global scale. Here the authors use LinkedIn's employment history data to construct a global labor flow network from which they find that the resulting geo-industrial clusters exhibit a stronger association between the influx of educated-workers and financial performance compared to existing aggregation units.