Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning

Purpose: To predict central serous chorioretinopathy (CSC) recurrence 3 and 6 months after laser treatment by using machine learning.Methods: Clinical and imaging features of 461 patients (480 eyes) with CSC were collected at Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center (XEC). The ZOC dat...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Fabao Xu, Cheng Wan, Lanqin Zhao, Qijing You, Yifan Xiang, Lijun Zhou, Zhongwen Li, Songjian Gong, Yi Zhu, Chuan Chen, Cong Li, Li Zhang, Chong Guo, Longhui Li, Yajun Gong, Xiayin Zhang, Kunbei Lai, Chuangxin Huang, Hongkun Zhao, Daniel Ting, Chenjin Jin, Haotian Lin
Formato: article
Lenguaje:EN
Publicado: Frontiers Media S.A. 2021
Materias:
Acceso en línea:https://doaj.org/article/19b347d7827245babbc9eef69ce85087
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:19b347d7827245babbc9eef69ce85087
record_format dspace
spelling oai:doaj.org-article:19b347d7827245babbc9eef69ce850872021-12-01T02:25:31ZPredicting Central Serous Chorioretinopathy Recurrence Using Machine Learning1664-042X10.3389/fphys.2021.649316https://doaj.org/article/19b347d7827245babbc9eef69ce850872021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fphys.2021.649316/fullhttps://doaj.org/toc/1664-042XPurpose: To predict central serous chorioretinopathy (CSC) recurrence 3 and 6 months after laser treatment by using machine learning.Methods: Clinical and imaging features of 461 patients (480 eyes) with CSC were collected at Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center (XEC). The ZOC data (416 eyes of 401 patients) were used as the training dataset and the internal test dataset, while the XEC data (64 eyes of 60 patients) were used as the external test dataset. Six different machine learning algorithms and an ensemble model were trained to predict recurrence in patients with CSC. After completing the initial detailed investigation, we designed a simplified model using only clinical data and OCT features.Results: The ensemble model exhibited the best performance among the six algorithms, with accuracies of 0.941 (internal test dataset) and 0.970 (external test dataset) at 3 months and 0.903 (internal test dataset) and 1.000 (external test dataset) at 6 months. The simplified model showed a comparable level of predictive power.Conclusion: Machine learning achieves high accuracies in predicting the recurrence of CSC patients. The application of an intelligent recurrence prediction model for patients with CSC can potentially facilitate recurrence factor identification and precise individualized interventions.Fabao XuCheng WanLanqin ZhaoQijing YouYifan XiangLijun ZhouZhongwen LiSongjian GongYi ZhuChuan ChenCong LiLi ZhangLi ZhangChong GuoLonghui LiYajun GongXiayin ZhangKunbei LaiChuangxin HuangHongkun ZhaoDaniel TingDaniel TingChenjin JinHaotian LinHaotian LinFrontiers Media S.A.articlemachine learningcentral serous chorioretinopathyrecurrenceoptical coherence tomographyimaging featuresPhysiologyQP1-981ENFrontiers in Physiology, Vol 12 (2021)
institution DOAJ
collection DOAJ
language EN
topic machine learning
central serous chorioretinopathy
recurrence
optical coherence tomography
imaging features
Physiology
QP1-981
spellingShingle machine learning
central serous chorioretinopathy
recurrence
optical coherence tomography
imaging features
Physiology
QP1-981
Fabao Xu
Cheng Wan
Lanqin Zhao
Qijing You
Yifan Xiang
Lijun Zhou
Zhongwen Li
Songjian Gong
Yi Zhu
Chuan Chen
Cong Li
Li Zhang
Li Zhang
Chong Guo
Longhui Li
Yajun Gong
Xiayin Zhang
Kunbei Lai
Chuangxin Huang
Hongkun Zhao
Daniel Ting
Daniel Ting
Chenjin Jin
Haotian Lin
Haotian Lin
Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning
description Purpose: To predict central serous chorioretinopathy (CSC) recurrence 3 and 6 months after laser treatment by using machine learning.Methods: Clinical and imaging features of 461 patients (480 eyes) with CSC were collected at Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center (XEC). The ZOC data (416 eyes of 401 patients) were used as the training dataset and the internal test dataset, while the XEC data (64 eyes of 60 patients) were used as the external test dataset. Six different machine learning algorithms and an ensemble model were trained to predict recurrence in patients with CSC. After completing the initial detailed investigation, we designed a simplified model using only clinical data and OCT features.Results: The ensemble model exhibited the best performance among the six algorithms, with accuracies of 0.941 (internal test dataset) and 0.970 (external test dataset) at 3 months and 0.903 (internal test dataset) and 1.000 (external test dataset) at 6 months. The simplified model showed a comparable level of predictive power.Conclusion: Machine learning achieves high accuracies in predicting the recurrence of CSC patients. The application of an intelligent recurrence prediction model for patients with CSC can potentially facilitate recurrence factor identification and precise individualized interventions.
format article
author Fabao Xu
Cheng Wan
Lanqin Zhao
Qijing You
Yifan Xiang
Lijun Zhou
Zhongwen Li
Songjian Gong
Yi Zhu
Chuan Chen
Cong Li
Li Zhang
Li Zhang
Chong Guo
Longhui Li
Yajun Gong
Xiayin Zhang
Kunbei Lai
Chuangxin Huang
Hongkun Zhao
Daniel Ting
Daniel Ting
Chenjin Jin
Haotian Lin
Haotian Lin
author_facet Fabao Xu
Cheng Wan
Lanqin Zhao
Qijing You
Yifan Xiang
Lijun Zhou
Zhongwen Li
Songjian Gong
Yi Zhu
Chuan Chen
Cong Li
Li Zhang
Li Zhang
Chong Guo
Longhui Li
Yajun Gong
Xiayin Zhang
Kunbei Lai
Chuangxin Huang
Hongkun Zhao
Daniel Ting
Daniel Ting
Chenjin Jin
Haotian Lin
Haotian Lin
author_sort Fabao Xu
title Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning
title_short Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning
title_full Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning
title_fullStr Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning
title_full_unstemmed Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning
title_sort predicting central serous chorioretinopathy recurrence using machine learning
publisher Frontiers Media S.A.
publishDate 2021
url https://doaj.org/article/19b347d7827245babbc9eef69ce85087
work_keys_str_mv AT fabaoxu predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT chengwan predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT lanqinzhao predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT qijingyou predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT yifanxiang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT lijunzhou predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT zhongwenli predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT songjiangong predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT yizhu predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT chuanchen predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT congli predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT lizhang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT lizhang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT chongguo predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT longhuili predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT yajungong predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT xiayinzhang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT kunbeilai predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT chuangxinhuang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT hongkunzhao predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT danielting predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT danielting predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT chenjinjin predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT haotianlin predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
AT haotianlin predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning
_version_ 1718405888581042176