Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning
Purpose: To predict central serous chorioretinopathy (CSC) recurrence 3 and 6 months after laser treatment by using machine learning.Methods: Clinical and imaging features of 461 patients (480 eyes) with CSC were collected at Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center (XEC). The ZOC dat...
Guardado en:
Autores principales: | , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/19b347d7827245babbc9eef69ce85087 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:19b347d7827245babbc9eef69ce85087 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:19b347d7827245babbc9eef69ce850872021-12-01T02:25:31ZPredicting Central Serous Chorioretinopathy Recurrence Using Machine Learning1664-042X10.3389/fphys.2021.649316https://doaj.org/article/19b347d7827245babbc9eef69ce850872021-11-01T00:00:00Zhttps://www.frontiersin.org/articles/10.3389/fphys.2021.649316/fullhttps://doaj.org/toc/1664-042XPurpose: To predict central serous chorioretinopathy (CSC) recurrence 3 and 6 months after laser treatment by using machine learning.Methods: Clinical and imaging features of 461 patients (480 eyes) with CSC were collected at Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center (XEC). The ZOC data (416 eyes of 401 patients) were used as the training dataset and the internal test dataset, while the XEC data (64 eyes of 60 patients) were used as the external test dataset. Six different machine learning algorithms and an ensemble model were trained to predict recurrence in patients with CSC. After completing the initial detailed investigation, we designed a simplified model using only clinical data and OCT features.Results: The ensemble model exhibited the best performance among the six algorithms, with accuracies of 0.941 (internal test dataset) and 0.970 (external test dataset) at 3 months and 0.903 (internal test dataset) and 1.000 (external test dataset) at 6 months. The simplified model showed a comparable level of predictive power.Conclusion: Machine learning achieves high accuracies in predicting the recurrence of CSC patients. The application of an intelligent recurrence prediction model for patients with CSC can potentially facilitate recurrence factor identification and precise individualized interventions.Fabao XuCheng WanLanqin ZhaoQijing YouYifan XiangLijun ZhouZhongwen LiSongjian GongYi ZhuChuan ChenCong LiLi ZhangLi ZhangChong GuoLonghui LiYajun GongXiayin ZhangKunbei LaiChuangxin HuangHongkun ZhaoDaniel TingDaniel TingChenjin JinHaotian LinHaotian LinFrontiers Media S.A.articlemachine learningcentral serous chorioretinopathyrecurrenceoptical coherence tomographyimaging featuresPhysiologyQP1-981ENFrontiers in Physiology, Vol 12 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
machine learning central serous chorioretinopathy recurrence optical coherence tomography imaging features Physiology QP1-981 |
spellingShingle |
machine learning central serous chorioretinopathy recurrence optical coherence tomography imaging features Physiology QP1-981 Fabao Xu Cheng Wan Lanqin Zhao Qijing You Yifan Xiang Lijun Zhou Zhongwen Li Songjian Gong Yi Zhu Chuan Chen Cong Li Li Zhang Li Zhang Chong Guo Longhui Li Yajun Gong Xiayin Zhang Kunbei Lai Chuangxin Huang Hongkun Zhao Daniel Ting Daniel Ting Chenjin Jin Haotian Lin Haotian Lin Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning |
description |
Purpose: To predict central serous chorioretinopathy (CSC) recurrence 3 and 6 months after laser treatment by using machine learning.Methods: Clinical and imaging features of 461 patients (480 eyes) with CSC were collected at Zhongshan Ophthalmic Center (ZOC) and Xiamen Eye Center (XEC). The ZOC data (416 eyes of 401 patients) were used as the training dataset and the internal test dataset, while the XEC data (64 eyes of 60 patients) were used as the external test dataset. Six different machine learning algorithms and an ensemble model were trained to predict recurrence in patients with CSC. After completing the initial detailed investigation, we designed a simplified model using only clinical data and OCT features.Results: The ensemble model exhibited the best performance among the six algorithms, with accuracies of 0.941 (internal test dataset) and 0.970 (external test dataset) at 3 months and 0.903 (internal test dataset) and 1.000 (external test dataset) at 6 months. The simplified model showed a comparable level of predictive power.Conclusion: Machine learning achieves high accuracies in predicting the recurrence of CSC patients. The application of an intelligent recurrence prediction model for patients with CSC can potentially facilitate recurrence factor identification and precise individualized interventions. |
format |
article |
author |
Fabao Xu Cheng Wan Lanqin Zhao Qijing You Yifan Xiang Lijun Zhou Zhongwen Li Songjian Gong Yi Zhu Chuan Chen Cong Li Li Zhang Li Zhang Chong Guo Longhui Li Yajun Gong Xiayin Zhang Kunbei Lai Chuangxin Huang Hongkun Zhao Daniel Ting Daniel Ting Chenjin Jin Haotian Lin Haotian Lin |
author_facet |
Fabao Xu Cheng Wan Lanqin Zhao Qijing You Yifan Xiang Lijun Zhou Zhongwen Li Songjian Gong Yi Zhu Chuan Chen Cong Li Li Zhang Li Zhang Chong Guo Longhui Li Yajun Gong Xiayin Zhang Kunbei Lai Chuangxin Huang Hongkun Zhao Daniel Ting Daniel Ting Chenjin Jin Haotian Lin Haotian Lin |
author_sort |
Fabao Xu |
title |
Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning |
title_short |
Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning |
title_full |
Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning |
title_fullStr |
Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning |
title_full_unstemmed |
Predicting Central Serous Chorioretinopathy Recurrence Using Machine Learning |
title_sort |
predicting central serous chorioretinopathy recurrence using machine learning |
publisher |
Frontiers Media S.A. |
publishDate |
2021 |
url |
https://doaj.org/article/19b347d7827245babbc9eef69ce85087 |
work_keys_str_mv |
AT fabaoxu predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT chengwan predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT lanqinzhao predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT qijingyou predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT yifanxiang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT lijunzhou predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT zhongwenli predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT songjiangong predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT yizhu predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT chuanchen predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT congli predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT lizhang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT lizhang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT chongguo predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT longhuili predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT yajungong predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT xiayinzhang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT kunbeilai predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT chuangxinhuang predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT hongkunzhao predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT danielting predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT danielting predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT chenjinjin predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT haotianlin predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning AT haotianlin predictingcentralserouschorioretinopathyrecurrenceusingmachinelearning |
_version_ |
1718405888581042176 |