Functional skeletal muscle constructs from transdifferentiated human fibroblasts
Abstract Transdifferentiation of human non-muscle cells directly into myogenic cells by forced expression of MyoD represents one route to obtain highly desirable human myogenic cells. However, functional properties of the tissue constructs derived from these transdifferentiated cells have been rarel...
Guardado en:
Autores principales: | , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/19ce38e9d34a4b1a83dadebdafcd9c10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:19ce38e9d34a4b1a83dadebdafcd9c10 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:19ce38e9d34a4b1a83dadebdafcd9c102021-12-02T12:03:15ZFunctional skeletal muscle constructs from transdifferentiated human fibroblasts10.1038/s41598-020-78987-82045-2322https://doaj.org/article/19ce38e9d34a4b1a83dadebdafcd9c102020-12-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-78987-8https://doaj.org/toc/2045-2322Abstract Transdifferentiation of human non-muscle cells directly into myogenic cells by forced expression of MyoD represents one route to obtain highly desirable human myogenic cells. However, functional properties of the tissue constructs derived from these transdifferentiated cells have been rarely studied. Here, we report that three-dimensional (3D) tissue constructs engineered with iMyoD-hTERT-NHDFs, normal human dermal fibroblasts transduced with genes encoding human telomerase reverse transcriptase and doxycycline-inducible MyoD, generate detectable contractile forces in response to electrical stimuli upon MyoD expression. Withdrawal of doxycycline in the middle of 3D culture results in 3.05 and 2.28 times increases in twitch and tetanic forces, respectively, suggesting that temporally-controlled MyoD expression benefits functional myogenic differentiation of transdifferentiated myoblast-like cells. Treatment with CHIR99021, a Wnt activator, and DAPT, a Notch inhibitor, leads to further enhanced contractile forces. The ability of these abundant and potentially patient-specific and disease-specific cells to develop into functional skeletal muscle constructs makes them highly valuable for many applications, such as disease modeling.Bin XuAllison SiehrWei ShenNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-14 (2020) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Bin Xu Allison Siehr Wei Shen Functional skeletal muscle constructs from transdifferentiated human fibroblasts |
description |
Abstract Transdifferentiation of human non-muscle cells directly into myogenic cells by forced expression of MyoD represents one route to obtain highly desirable human myogenic cells. However, functional properties of the tissue constructs derived from these transdifferentiated cells have been rarely studied. Here, we report that three-dimensional (3D) tissue constructs engineered with iMyoD-hTERT-NHDFs, normal human dermal fibroblasts transduced with genes encoding human telomerase reverse transcriptase and doxycycline-inducible MyoD, generate detectable contractile forces in response to electrical stimuli upon MyoD expression. Withdrawal of doxycycline in the middle of 3D culture results in 3.05 and 2.28 times increases in twitch and tetanic forces, respectively, suggesting that temporally-controlled MyoD expression benefits functional myogenic differentiation of transdifferentiated myoblast-like cells. Treatment with CHIR99021, a Wnt activator, and DAPT, a Notch inhibitor, leads to further enhanced contractile forces. The ability of these abundant and potentially patient-specific and disease-specific cells to develop into functional skeletal muscle constructs makes them highly valuable for many applications, such as disease modeling. |
format |
article |
author |
Bin Xu Allison Siehr Wei Shen |
author_facet |
Bin Xu Allison Siehr Wei Shen |
author_sort |
Bin Xu |
title |
Functional skeletal muscle constructs from transdifferentiated human fibroblasts |
title_short |
Functional skeletal muscle constructs from transdifferentiated human fibroblasts |
title_full |
Functional skeletal muscle constructs from transdifferentiated human fibroblasts |
title_fullStr |
Functional skeletal muscle constructs from transdifferentiated human fibroblasts |
title_full_unstemmed |
Functional skeletal muscle constructs from transdifferentiated human fibroblasts |
title_sort |
functional skeletal muscle constructs from transdifferentiated human fibroblasts |
publisher |
Nature Portfolio |
publishDate |
2020 |
url |
https://doaj.org/article/19ce38e9d34a4b1a83dadebdafcd9c10 |
work_keys_str_mv |
AT binxu functionalskeletalmuscleconstructsfromtransdifferentiatedhumanfibroblasts AT allisonsiehr functionalskeletalmuscleconstructsfromtransdifferentiatedhumanfibroblasts AT weishen functionalskeletalmuscleconstructsfromtransdifferentiatedhumanfibroblasts |
_version_ |
1718394734115815424 |