The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions.
As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive...
Guardado en:
Autores principales: | , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2012
|
Materias: | |
Acceso en línea: | https://doaj.org/article/19d3cb7e42db44cbb6080d84b7d91a04 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:19d3cb7e42db44cbb6080d84b7d91a04 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:19d3cb7e42db44cbb6080d84b7d91a042021-11-18T08:03:27ZThe role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions.1932-620310.1371/journal.pone.0052847https://doaj.org/article/19d3cb7e42db44cbb6080d84b7d91a042012-01-01T00:00:00Zhttps://www.ncbi.nlm.nih.gov/pmc/articles/pmid/23300796/?tool=EBIhttps://doaj.org/toc/1932-6203As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR) sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD), implying a potential relationship with the insulin signaling pathway.Shuai WangWei WeiYadong ZhengJunling HouYongxi DouShaohua ZhangXuenong LuoXuepeng CaiPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 7, Iss 12, p e52847 (2012) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Shuai Wang Wei Wei Yadong Zheng Junling Hou Yongxi Dou Shaohua Zhang Xuenong Luo Xuepeng Cai The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions. |
description |
As the linker between the A chain and B chain of proinsulin, C-peptide displays high variability in length and amino acid composition, and has been considered as an inert byproduct of insulin synthesis and processing for many years. Recent studies have suggested that C-peptide can act as a bioactive hormone, exerting various biological effects on the pathophysiology and treatment of diabetes. In this study, we analyzed the coevolution of insulin molecules among vertebrates, aiming at exploring the evolutionary characteristics of insulin molecule, especially the C-peptide. We also calculated the correlations of evolutionary rates between the insulin and the insulin receptor (IR) sequences as well as the domain-domain pairs of the ligand and receptor by the mirrortree method. The results revealed distinctive features of C-peptide in insulin intramolecular coevolution and correlated residue substitutions, which partly supported the idea that C-peptide can act as a bioactive hormone, with significant sequence features, as well as a linker assisting the formation of mature insulin during synthesis. Interestingly, the evolution of C-peptide exerted the highest correlation with that of the insulin receptor and its ligand binding domain (LBD), implying a potential relationship with the insulin signaling pathway. |
format |
article |
author |
Shuai Wang Wei Wei Yadong Zheng Junling Hou Yongxi Dou Shaohua Zhang Xuenong Luo Xuepeng Cai |
author_facet |
Shuai Wang Wei Wei Yadong Zheng Junling Hou Yongxi Dou Shaohua Zhang Xuenong Luo Xuepeng Cai |
author_sort |
Shuai Wang |
title |
The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions. |
title_short |
The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions. |
title_full |
The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions. |
title_fullStr |
The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions. |
title_full_unstemmed |
The role of insulin C-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions. |
title_sort |
role of insulin c-peptide in the coevolution analyses of the insulin signaling pathway: a hint for its functions. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2012 |
url |
https://doaj.org/article/19d3cb7e42db44cbb6080d84b7d91a04 |
work_keys_str_mv |
AT shuaiwang theroleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT weiwei theroleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT yadongzheng theroleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT junlinghou theroleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT yongxidou theroleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT shaohuazhang theroleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT xuenongluo theroleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT xuepengcai theroleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT shuaiwang roleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT weiwei roleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT yadongzheng roleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT junlinghou roleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT yongxidou roleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT shaohuazhang roleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT xuenongluo roleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions AT xuepengcai roleofinsulincpeptideinthecoevolutionanalysesoftheinsulinsignalingpathwayahintforitsfunctions |
_version_ |
1718422590836441088 |