Applying of hierarchical clustering to analysis of protein patterns in the human cancer-associated liver.
<h4>Background</h4>There are two ways that statistical methods can learn from biomedical data. One way is to learn classifiers to identify diseases and to predict outcomes using the training dataset with established diagnosis for each sample. When the training dataset is not available th...
Guardado en:
Autores principales: | Natalia A Petushkova, Mikhail A Pyatnitskiy, Vladislav A Rudenko, Olesya V Larina, Oxana P Trifonova, Julya S Kisrieva, Natalia F Samenkova, Galina P Kuznetsova, Irina I Karuzina, Andrey V Lisitsa |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2014
|
Materias: | |
Acceso en línea: | https://doaj.org/article/19e68aad4d1042b8af826bda1c4f9e10 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
THE ROLE OF APPLIED MATHEMATIC SUBJECTS IN ECONOMIST’S EDUCATION
por: Natalia V. Popova
Publicado: (2018) -
Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes.
por: Juan A G Ranea, et al.
Publicado: (2007) -
Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors
por: Emil R. Mamleyev, et al.
Publicado: (2019) -
Efficacy of the Applied Natural Enemies on the Survival of Colorado Potato Beetle Adults
por: Vladimír Půža, et al.
Publicado: (2021) -
Oxford Nanopore MinION Direct RNA-Seq for Systems Biology
por: Mikhail A. Pyatnitskiy, et al.
Publicado: (2021)