Applying of hierarchical clustering to analysis of protein patterns in the human cancer-associated liver.
<h4>Background</h4>There are two ways that statistical methods can learn from biomedical data. One way is to learn classifiers to identify diseases and to predict outcomes using the training dataset with established diagnosis for each sample. When the training dataset is not available th...
Enregistré dans:
Auteurs principaux: | Natalia A Petushkova, Mikhail A Pyatnitskiy, Vladislav A Rudenko, Olesya V Larina, Oxana P Trifonova, Julya S Kisrieva, Natalia F Samenkova, Galina P Kuznetsova, Irina I Karuzina, Andrey V Lisitsa |
---|---|
Format: | article |
Langue: | EN |
Publié: |
Public Library of Science (PLoS)
2014
|
Sujets: | |
Accès en ligne: | https://doaj.org/article/19e68aad4d1042b8af826bda1c4f9e10 |
Tags: |
Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!
|
Documents similaires
-
THE ROLE OF APPLIED MATHEMATIC SUBJECTS IN ECONOMIST’S EDUCATION
par: Natalia V. Popova
Publié: (2018) -
Predicting protein function with hierarchical phylogenetic profiles: the Gene3D Phylo-Tuner method applied to eukaryotic genomes.
par: Juan A G Ranea, et autres
Publié: (2007) -
Laser-induced hierarchical carbon patterns on polyimide substrates for flexible urea sensors
par: Emil R. Mamleyev, et autres
Publié: (2019) -
Efficacy of the Applied Natural Enemies on the Survival of Colorado Potato Beetle Adults
par: Vladimír Půža, et autres
Publié: (2021) -
Oxford Nanopore MinION Direct RNA-Seq for Systems Biology
par: Mikhail A. Pyatnitskiy, et autres
Publié: (2021)