Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem
Abstract Despite accumulating evidence on the impact of global climate warming on marine microbes, how increasing seawater temperature influences the marine bacterioplankton communities is elusive. As temperature gradient created by thermal discharges provides a suitable in situ model to study the i...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a0c850a077d4c23861b8393fb315f42 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1a0c850a077d4c23861b8393fb315f42 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1a0c850a077d4c23861b8393fb315f422021-12-02T17:51:31ZThermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem10.1038/s41598-021-96969-22045-2322https://doaj.org/article/1a0c850a077d4c23861b8393fb315f422021-08-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-96969-2https://doaj.org/toc/2045-2322Abstract Despite accumulating evidence on the impact of global climate warming on marine microbes, how increasing seawater temperature influences the marine bacterioplankton communities is elusive. As temperature gradient created by thermal discharges provides a suitable in situ model to study the influence of warming on marine microorganisms, surface seawater were sampled consecutively for one year (September-2016 to August-2017) from the control (unimpacted) and thermal discharge-impacted areas of a coastal power plant, located in India. The bacterioplankton community differences between control (n = 16) and thermal discharge-impacted (n = 26) areas, as investigated using 16S rRNA gene tag sequencing revealed reduced richness and varied community composition at thermal discharge-impacted areas. The relative proportion of Proteobacteria was found to be higher (average ~ 15%) while, Bacteroidetes was lower (average ~ 10%) at thermal discharge-impacted areas. Intriguingly, thermal discharge-impacted areas were overrepresented by several potential pathogenic bacterial genera (e.g. Pseudomonas, Acinetobacter, Sulfitobacter, Vibrio) and other native marine genera (e.g. Marinobacter, Pseudoalteromonas, Alteromonas, Pseudidiomarina, Halomonas). Further, co-occurrence networks demonstrated that complexity and connectivity of networks were altered in warming condition. Altogether, results indicated that increasing temperature has a profound impact on marine bacterioplankton richness, community composition, and inter-species interactions. Our findings are immensely important in forecasting the consequences of future climate changes especially, ocean warming on marine microbiota.Meora RajeevT. J. SushmithaChairmandurai AravindrajaSubba Rao ToletiShunmugiah Karutha PandianNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-13 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Meora Rajeev T. J. Sushmitha Chairmandurai Aravindraja Subba Rao Toleti Shunmugiah Karutha Pandian Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem |
description |
Abstract Despite accumulating evidence on the impact of global climate warming on marine microbes, how increasing seawater temperature influences the marine bacterioplankton communities is elusive. As temperature gradient created by thermal discharges provides a suitable in situ model to study the influence of warming on marine microorganisms, surface seawater were sampled consecutively for one year (September-2016 to August-2017) from the control (unimpacted) and thermal discharge-impacted areas of a coastal power plant, located in India. The bacterioplankton community differences between control (n = 16) and thermal discharge-impacted (n = 26) areas, as investigated using 16S rRNA gene tag sequencing revealed reduced richness and varied community composition at thermal discharge-impacted areas. The relative proportion of Proteobacteria was found to be higher (average ~ 15%) while, Bacteroidetes was lower (average ~ 10%) at thermal discharge-impacted areas. Intriguingly, thermal discharge-impacted areas were overrepresented by several potential pathogenic bacterial genera (e.g. Pseudomonas, Acinetobacter, Sulfitobacter, Vibrio) and other native marine genera (e.g. Marinobacter, Pseudoalteromonas, Alteromonas, Pseudidiomarina, Halomonas). Further, co-occurrence networks demonstrated that complexity and connectivity of networks were altered in warming condition. Altogether, results indicated that increasing temperature has a profound impact on marine bacterioplankton richness, community composition, and inter-species interactions. Our findings are immensely important in forecasting the consequences of future climate changes especially, ocean warming on marine microbiota. |
format |
article |
author |
Meora Rajeev T. J. Sushmitha Chairmandurai Aravindraja Subba Rao Toleti Shunmugiah Karutha Pandian |
author_facet |
Meora Rajeev T. J. Sushmitha Chairmandurai Aravindraja Subba Rao Toleti Shunmugiah Karutha Pandian |
author_sort |
Meora Rajeev |
title |
Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem |
title_short |
Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem |
title_full |
Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem |
title_fullStr |
Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem |
title_full_unstemmed |
Thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem |
title_sort |
thermal discharge-induced seawater warming alters richness, community composition and interactions of bacterioplankton assemblages in a coastal ecosystem |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1a0c850a077d4c23861b8393fb315f42 |
work_keys_str_mv |
AT meorarajeev thermaldischargeinducedseawaterwarmingaltersrichnesscommunitycompositionandinteractionsofbacterioplanktonassemblagesinacoastalecosystem AT tjsushmitha thermaldischargeinducedseawaterwarmingaltersrichnesscommunitycompositionandinteractionsofbacterioplanktonassemblagesinacoastalecosystem AT chairmanduraiaravindraja thermaldischargeinducedseawaterwarmingaltersrichnesscommunitycompositionandinteractionsofbacterioplanktonassemblagesinacoastalecosystem AT subbaraotoleti thermaldischargeinducedseawaterwarmingaltersrichnesscommunitycompositionandinteractionsofbacterioplanktonassemblagesinacoastalecosystem AT shunmugiahkaruthapandian thermaldischargeinducedseawaterwarmingaltersrichnesscommunitycompositionandinteractionsofbacterioplanktonassemblagesinacoastalecosystem |
_version_ |
1718379212361957376 |