Rainfall prediction: A comparative analysis of modern machine learning algorithms for time-series forecasting
Rainfall forecasting has gained utmost research relevance in recent times due to its complexities and persistent applications such as flood forecasting and monitoring of pollutant concentration levels, among others. Existing models use complex statistical models that are often too costly, both compu...
Guardado en:
Autores principales: | Ari Yair Barrera-Animas, Lukumon O. Oyedele, Muhammad Bilal, Taofeek Dolapo Akinosho, Juan Manuel Davila Delgado, Lukman Adewale Akanbi |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a13908ff72e44c0bc20b21c4318b446 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
eorlEvaluation of Rainfall-Induced Landslides triggering using a multidisciplinary approachIvo
por: Ivo Fustos1, Pablo Moreno-Yaeger, Daniel Vasquez, Bastian Morales3 , Antonieta Silva, Elisa Ramirez
Publicado: (2020) -
Analyzing and forecasting rainfall patterns in the Manga-Bawku area, northeastern Ghana: Possible implication of climate change
por: Paul Dankwa, et al.
Publicado: (2021) -
National Holidays and Social Mobility Behaviors: Alternatives for Forecasting COVID-19 Deaths in Brazil
por: Dunfrey Pires Aragão, et al.
Publicado: (2021) -
Measuring the Topological Time Irreversibility of Time Series With the Degree-Vector-Based Visibility Graph Method
por: Ryutaro Mori, et al.
Publicado: (2021) -
A Bayesian-Deep Learning Model for Estimating COVID-19 Evolution in Spain
por: Stefano Cabras
Publicado: (2021)