μ-Hankel operators on Hilbert spaces
A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AGH Univeristy of Science and Technology Press
2021
|
Materias: | |
Acceso en línea: | https://doi.org/10.7494/OpMath.2021.41.6.881 https://doaj.org/article/1a207886d39d4a2b8a2e355256e807de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their description in the Hardy space is given. Integral representations of \(\mu\)-Hankel operators on the unit disk and on the Semi-Axis are also considered. |
---|