μ-Hankel operators on Hilbert spaces

A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Adolf Mirotin, Ekaterina Kuzmenkova
Formato: article
Lenguaje:EN
Publicado: AGH Univeristy of Science and Technology Press 2021
Materias:
Acceso en línea:https://doi.org/10.7494/OpMath.2021.41.6.881
https://doaj.org/article/1a207886d39d4a2b8a2e355256e807de
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1a207886d39d4a2b8a2e355256e807de
record_format dspace
spelling oai:doaj.org-article:1a207886d39d4a2b8a2e355256e807de2021-11-29T22:51:49Zμ-Hankel operators on Hilbert spaces1232-9274https://doi.org/10.7494/OpMath.2021.41.6.881https://doaj.org/article/1a207886d39d4a2b8a2e355256e807de2021-11-01T00:00:00Zhttps://www.opuscula.agh.edu.pl/vol41/6/art/opuscula_math_4142.pdfhttps://doaj.org/toc/1232-9274A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their description in the Hardy space is given. Integral representations of \(\mu\)-Hankel operators on the unit disk and on the Semi-Axis are also considered.Adolf MirotinEkaterina KuzmenkovaAGH Univeristy of Science and Technology Pressarticlehankel operator\(\mu\)-hankel operatorhardy spaceintegral representationnuclear operatorintegral operatorApplied mathematics. Quantitative methodsT57-57.97ENOpuscula Mathematica, Vol 41, Iss 6, Pp 881-898 (2021)
institution DOAJ
collection DOAJ
language EN
topic hankel operator
\(\mu\)-hankel operator
hardy space
integral representation
nuclear operator
integral operator
Applied mathematics. Quantitative methods
T57-57.97
spellingShingle hankel operator
\(\mu\)-hankel operator
hardy space
integral representation
nuclear operator
integral operator
Applied mathematics. Quantitative methods
T57-57.97
Adolf Mirotin
Ekaterina Kuzmenkova
μ-Hankel operators on Hilbert spaces
description A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their description in the Hardy space is given. Integral representations of \(\mu\)-Hankel operators on the unit disk and on the Semi-Axis are also considered.
format article
author Adolf Mirotin
Ekaterina Kuzmenkova
author_facet Adolf Mirotin
Ekaterina Kuzmenkova
author_sort Adolf Mirotin
title μ-Hankel operators on Hilbert spaces
title_short μ-Hankel operators on Hilbert spaces
title_full μ-Hankel operators on Hilbert spaces
title_fullStr μ-Hankel operators on Hilbert spaces
title_full_unstemmed μ-Hankel operators on Hilbert spaces
title_sort μ-hankel operators on hilbert spaces
publisher AGH Univeristy of Science and Technology Press
publishDate 2021
url https://doi.org/10.7494/OpMath.2021.41.6.881
https://doaj.org/article/1a207886d39d4a2b8a2e355256e807de
work_keys_str_mv AT adolfmirotin mhankeloperatorsonhilbertspaces
AT ekaterinakuzmenkova mhankeloperatorsonhilbertspaces
_version_ 1718406848243040256