μ-Hankel operators on Hilbert spaces
A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their...
Guardado en:
Autores principales: | , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
AGH Univeristy of Science and Technology Press
2021
|
Materias: | |
Acceso en línea: | https://doi.org/10.7494/OpMath.2021.41.6.881 https://doaj.org/article/1a207886d39d4a2b8a2e355256e807de |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1a207886d39d4a2b8a2e355256e807de |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1a207886d39d4a2b8a2e355256e807de2021-11-29T22:51:49Zμ-Hankel operators on Hilbert spaces1232-9274https://doi.org/10.7494/OpMath.2021.41.6.881https://doaj.org/article/1a207886d39d4a2b8a2e355256e807de2021-11-01T00:00:00Zhttps://www.opuscula.agh.edu.pl/vol41/6/art/opuscula_math_4142.pdfhttps://doaj.org/toc/1232-9274A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their description in the Hardy space is given. Integral representations of \(\mu\)-Hankel operators on the unit disk and on the Semi-Axis are also considered.Adolf MirotinEkaterina KuzmenkovaAGH Univeristy of Science and Technology Pressarticlehankel operator\(\mu\)-hankel operatorhardy spaceintegral representationnuclear operatorintegral operatorApplied mathematics. Quantitative methodsT57-57.97ENOpuscula Mathematica, Vol 41, Iss 6, Pp 881-898 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
hankel operator \(\mu\)-hankel operator hardy space integral representation nuclear operator integral operator Applied mathematics. Quantitative methods T57-57.97 |
spellingShingle |
hankel operator \(\mu\)-hankel operator hardy space integral representation nuclear operator integral operator Applied mathematics. Quantitative methods T57-57.97 Adolf Mirotin Ekaterina Kuzmenkova μ-Hankel operators on Hilbert spaces |
description |
A class of operators is introduced (\(\mu\)-Hankel operators, \(\mu\) is a complex parameter), which generalizes the class of Hankel operators. Criteria for boundedness, compactness, nuclearity, and finite dimensionality are obtained for operators of this class, and for the case \(|\mu| = 1\) their description in the Hardy space is given. Integral representations of \(\mu\)-Hankel operators on the unit disk and on the Semi-Axis are also considered. |
format |
article |
author |
Adolf Mirotin Ekaterina Kuzmenkova |
author_facet |
Adolf Mirotin Ekaterina Kuzmenkova |
author_sort |
Adolf Mirotin |
title |
μ-Hankel operators on Hilbert spaces |
title_short |
μ-Hankel operators on Hilbert spaces |
title_full |
μ-Hankel operators on Hilbert spaces |
title_fullStr |
μ-Hankel operators on Hilbert spaces |
title_full_unstemmed |
μ-Hankel operators on Hilbert spaces |
title_sort |
μ-hankel operators on hilbert spaces |
publisher |
AGH Univeristy of Science and Technology Press |
publishDate |
2021 |
url |
https://doi.org/10.7494/OpMath.2021.41.6.881 https://doaj.org/article/1a207886d39d4a2b8a2e355256e807de |
work_keys_str_mv |
AT adolfmirotin mhankeloperatorsonhilbertspaces AT ekaterinakuzmenkova mhankeloperatorsonhilbertspaces |
_version_ |
1718406848243040256 |