Closed-Loop Recycling Dual-Mode Counter-Current Chromatography with Specified Sample Loading Durations: Modeling of Preparative and Industrial-Scale Separations

We previously reported on a new counter-current chromatography (CCC) operating mode called closed-loop recycling dual-mode counter-current chromatography (CLR DM CCC), which incorporates the advantages of closed-loop recycling (CLR) and dual-mode (DM) counter-current chromatography and includes sequ...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Artak E. Kostanyan, Andrey A. Voshkin
Formato: article
Lenguaje:EN
Publicado: MDPI AG 2021
Materias:
Acceso en línea:https://doaj.org/article/1a2126b3b6534a1c8c59c93feaf8bfed
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Sumario:We previously reported on a new counter-current chromatography (CCC) operating mode called closed-loop recycling dual-mode counter-current chromatography (CLR DM CCC), which incorporates the advantages of closed-loop recycling (CLR) and dual-mode (DM) counter-current chromatography and includes sequential separation of compounds in the closed-loop recycling mode with the mobile <i>x</i>-phase and in the inverted-phase counter-current mode with the mobile <i>y</i>-phase. The theoretical analysis of several implementations of this separation method was carried out under impulse sample injection conditions. This study is dedicated to the further development of CLR DM CCC theory applied to preparative and industrial separations, where high-throughput operation is required. Large sample volumes can be loaded via continuous loading within a specified time. To simulate CLR DM CCC separations with specified sample loading durations, equations are developed and presented in “Mathcad” software.