Transcriptome analysis of human dermal fibroblasts following red light phototherapy
Abstract Fibrosis occurs when collagen deposition and fibroblast proliferation replace healthy tissue. Red light (RL) may improve skin fibrosis via photobiomodulation, the process by which photosensitive chromophores in cells absorb visible or near-infrared light and undergo photophysical reactions....
Guardado en:
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a227c143dba4b9495dc0bf4c116257c |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1a227c143dba4b9495dc0bf4c116257c |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1a227c143dba4b9495dc0bf4c116257c2021-12-02T18:18:06ZTranscriptome analysis of human dermal fibroblasts following red light phototherapy10.1038/s41598-021-86623-22045-2322https://doaj.org/article/1a227c143dba4b9495dc0bf4c116257c2021-04-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-86623-2https://doaj.org/toc/2045-2322Abstract Fibrosis occurs when collagen deposition and fibroblast proliferation replace healthy tissue. Red light (RL) may improve skin fibrosis via photobiomodulation, the process by which photosensitive chromophores in cells absorb visible or near-infrared light and undergo photophysical reactions. Our previous research demonstrated that high fluence RL reduces fibroblast proliferation, collagen deposition, and migration. Despite the identification of several cellular mechanisms underpinning RL phototherapy, little is known about the transcriptional changes that lead to anti-fibrotic cellular responses. Herein, RNA sequencing was performed on human dermal fibroblasts treated with RL phototherapy. Pathway enrichment and transcription factor analysis revealed regulation of extracellular matrices, proliferation, and cellular responses to oxygen-containing compounds following RL phototherapy. Specifically, RL phototherapy increased the expression of MMP1, which codes for matrix metalloproteinase-1 (MMP-1) and is responsible for remodeling extracellular collagen. Differential regulation of MMP1 was confirmed with RT-qPCR and ELISA. Additionally, RL upregulated PRSS35, which has not been previously associated with skin activity, but has known anti-fibrotic functions. Our results suggest that RL may benefit patients by altering fibrotic gene expression.Evan AustinEugene KooAlexander MerleevDenis TorreAlina MarusinaGuillaume LuxardiAndrew MamalisRoslyn Rivkah IsseroffAvi Ma’ayanEmanual MaverakisJared JagdeoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-10 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Evan Austin Eugene Koo Alexander Merleev Denis Torre Alina Marusina Guillaume Luxardi Andrew Mamalis Roslyn Rivkah Isseroff Avi Ma’ayan Emanual Maverakis Jared Jagdeo Transcriptome analysis of human dermal fibroblasts following red light phototherapy |
description |
Abstract Fibrosis occurs when collagen deposition and fibroblast proliferation replace healthy tissue. Red light (RL) may improve skin fibrosis via photobiomodulation, the process by which photosensitive chromophores in cells absorb visible or near-infrared light and undergo photophysical reactions. Our previous research demonstrated that high fluence RL reduces fibroblast proliferation, collagen deposition, and migration. Despite the identification of several cellular mechanisms underpinning RL phototherapy, little is known about the transcriptional changes that lead to anti-fibrotic cellular responses. Herein, RNA sequencing was performed on human dermal fibroblasts treated with RL phototherapy. Pathway enrichment and transcription factor analysis revealed regulation of extracellular matrices, proliferation, and cellular responses to oxygen-containing compounds following RL phototherapy. Specifically, RL phototherapy increased the expression of MMP1, which codes for matrix metalloproteinase-1 (MMP-1) and is responsible for remodeling extracellular collagen. Differential regulation of MMP1 was confirmed with RT-qPCR and ELISA. Additionally, RL upregulated PRSS35, which has not been previously associated with skin activity, but has known anti-fibrotic functions. Our results suggest that RL may benefit patients by altering fibrotic gene expression. |
format |
article |
author |
Evan Austin Eugene Koo Alexander Merleev Denis Torre Alina Marusina Guillaume Luxardi Andrew Mamalis Roslyn Rivkah Isseroff Avi Ma’ayan Emanual Maverakis Jared Jagdeo |
author_facet |
Evan Austin Eugene Koo Alexander Merleev Denis Torre Alina Marusina Guillaume Luxardi Andrew Mamalis Roslyn Rivkah Isseroff Avi Ma’ayan Emanual Maverakis Jared Jagdeo |
author_sort |
Evan Austin |
title |
Transcriptome analysis of human dermal fibroblasts following red light phototherapy |
title_short |
Transcriptome analysis of human dermal fibroblasts following red light phototherapy |
title_full |
Transcriptome analysis of human dermal fibroblasts following red light phototherapy |
title_fullStr |
Transcriptome analysis of human dermal fibroblasts following red light phototherapy |
title_full_unstemmed |
Transcriptome analysis of human dermal fibroblasts following red light phototherapy |
title_sort |
transcriptome analysis of human dermal fibroblasts following red light phototherapy |
publisher |
Nature Portfolio |
publishDate |
2021 |
url |
https://doaj.org/article/1a227c143dba4b9495dc0bf4c116257c |
work_keys_str_mv |
AT evanaustin transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT eugenekoo transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT alexandermerleev transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT denistorre transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT alinamarusina transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT guillaumeluxardi transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT andrewmamalis transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT roslynrivkahisseroff transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT avimaayan transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT emanualmaverakis transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy AT jaredjagdeo transcriptomeanalysisofhumandermalfibroblastsfollowingredlightphototherapy |
_version_ |
1718378260112343040 |