Cric searchable image database as a public platform for conventional pap smear cytology data

Abstract Amidst the current health crisis and social distancing, telemedicine has become an important part of mainstream of healthcare, and building and deploying computational tools to support screening more efficiently is an increasing medical priority. The early identification of cervical cancer...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: Mariana T. Rezende, Raniere Silva, Fagner de O. Bernardo, Alessandra H. G. Tobias, Paulo H. C. Oliveira, Tales M. Machado, Caio S. Costa, Fatima N. S. Medeiros, Daniela M. Ushizima, Claudia M. Carneiro, Andrea G. C. Bianchi
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
Q
Acceso en línea:https://doaj.org/article/1a2d01d4f41e456ea12047413c935cca
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1a2d01d4f41e456ea12047413c935cca
record_format dspace
spelling oai:doaj.org-article:1a2d01d4f41e456ea12047413c935cca2021-12-02T17:52:43ZCric searchable image database as a public platform for conventional pap smear cytology data10.1038/s41597-021-00933-82052-4463https://doaj.org/article/1a2d01d4f41e456ea12047413c935cca2021-06-01T00:00:00Zhttps://doi.org/10.1038/s41597-021-00933-8https://doaj.org/toc/2052-4463Abstract Amidst the current health crisis and social distancing, telemedicine has become an important part of mainstream of healthcare, and building and deploying computational tools to support screening more efficiently is an increasing medical priority. The early identification of cervical cancer precursor lesions by Pap smear test can identify candidates for subsequent treatment. However, one of the main challenges is the accuracy of the conventional method, often subject to high rates of false negative. While machine learning has been highlighted to reduce the limitations of the test, the absence of high-quality curated datasets has prevented strategies development to improve cervical cancer screening. The Center for Recognition and Inspection of Cells (CRIC) platform enables the creation of CRIC Cervix collection, currently with 400 images (1,376 × 1,020 pixels) curated from conventional Pap smears, with manual classification of 11,534 cells. This collection has the potential to advance current efforts in training and testing machine learning algorithms for the automation of tasks as part of the cytopathological analysis in the routine work of laboratories.Mariana T. RezendeRaniere SilvaFagner de O. BernardoAlessandra H. G. TobiasPaulo H. C. OliveiraTales M. MachadoCaio S. CostaFatima N. S. MedeirosDaniela M. UshizimaClaudia M. CarneiroAndrea G. C. BianchiNature PortfolioarticleScienceQENScientific Data, Vol 8, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Science
Q
spellingShingle Science
Q
Mariana T. Rezende
Raniere Silva
Fagner de O. Bernardo
Alessandra H. G. Tobias
Paulo H. C. Oliveira
Tales M. Machado
Caio S. Costa
Fatima N. S. Medeiros
Daniela M. Ushizima
Claudia M. Carneiro
Andrea G. C. Bianchi
Cric searchable image database as a public platform for conventional pap smear cytology data
description Abstract Amidst the current health crisis and social distancing, telemedicine has become an important part of mainstream of healthcare, and building and deploying computational tools to support screening more efficiently is an increasing medical priority. The early identification of cervical cancer precursor lesions by Pap smear test can identify candidates for subsequent treatment. However, one of the main challenges is the accuracy of the conventional method, often subject to high rates of false negative. While machine learning has been highlighted to reduce the limitations of the test, the absence of high-quality curated datasets has prevented strategies development to improve cervical cancer screening. The Center for Recognition and Inspection of Cells (CRIC) platform enables the creation of CRIC Cervix collection, currently with 400 images (1,376 × 1,020 pixels) curated from conventional Pap smears, with manual classification of 11,534 cells. This collection has the potential to advance current efforts in training and testing machine learning algorithms for the automation of tasks as part of the cytopathological analysis in the routine work of laboratories.
format article
author Mariana T. Rezende
Raniere Silva
Fagner de O. Bernardo
Alessandra H. G. Tobias
Paulo H. C. Oliveira
Tales M. Machado
Caio S. Costa
Fatima N. S. Medeiros
Daniela M. Ushizima
Claudia M. Carneiro
Andrea G. C. Bianchi
author_facet Mariana T. Rezende
Raniere Silva
Fagner de O. Bernardo
Alessandra H. G. Tobias
Paulo H. C. Oliveira
Tales M. Machado
Caio S. Costa
Fatima N. S. Medeiros
Daniela M. Ushizima
Claudia M. Carneiro
Andrea G. C. Bianchi
author_sort Mariana T. Rezende
title Cric searchable image database as a public platform for conventional pap smear cytology data
title_short Cric searchable image database as a public platform for conventional pap smear cytology data
title_full Cric searchable image database as a public platform for conventional pap smear cytology data
title_fullStr Cric searchable image database as a public platform for conventional pap smear cytology data
title_full_unstemmed Cric searchable image database as a public platform for conventional pap smear cytology data
title_sort cric searchable image database as a public platform for conventional pap smear cytology data
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1a2d01d4f41e456ea12047413c935cca
work_keys_str_mv AT marianatrezende cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT ranieresilva cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT fagnerdeobernardo cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT alessandrahgtobias cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT paulohcoliveira cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT talesmmachado cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT caioscosta cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT fatimansmedeiros cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT danielamushizima cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT claudiamcarneiro cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
AT andreagcbianchi cricsearchableimagedatabaseasapublicplatformforconventionalpapsmearcytologydata
_version_ 1718379154595905536