Impaired olfactory neurogenesis affects the performance of olfactory-guided behavior in aged female opossums
Abstract Increasing evidence has indicated that adult neurogenesis contributes to brain plasticity, although function of new neurons is still under debate. In opossums, we performed an olfactory-guided behavior task and examined the association between olfactory discrimination-guided behavior and ad...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a33916548bc4225ad35cfbaae515b07 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Sumario: | Abstract Increasing evidence has indicated that adult neurogenesis contributes to brain plasticity, although function of new neurons is still under debate. In opossums, we performed an olfactory-guided behavior task and examined the association between olfactory discrimination-guided behavior and adult neurogenesis in the olfactory bulb (OB). We found that young and aged opossums of either sex learned to find food buried in litter using olfactory cues. However, aged females required more time to find food compared to aged males and young opossums of both sexes. The levels of doublecortin, that is used as a marker for immature neurons, were the lowest in the OB of aged female opossums. Another protein, HuD that is associated with learning and memory, was detected in all layers of the OB, except the granule cell layer, where a high density of DCX cells was detected. The level of HuD was higher in aged opossums compared to young opossums. This indicates that HuD is involved in plasticity and negatively regulates olfactory perception. The majority of 2-year-old female opossums are in the post-reproductive age but males of this age are still sexually active. We suggest that in aged female opossums neural plasticity induced by adult neurogenesis decreases due to their hormonal decline. |
---|