Don’t Overweight Weights: Evaluation of Weighting Strategies for Multi-Task Bioactivity Classification Models
Machine learning models predicting the bioactivity of chemical compounds belong nowadays to the standard tools of cheminformaticians and computational medicinal chemists. Multi-task and federated learning are promising machine learning approaches that allow privacy-preserving usage of large amounts...
Guardado en:
Autores principales: | Lina Humbeck, Tobias Morawietz, Noe Sturm, Adam Zalewski, Simon Harnqvist, Wouter Heyndrickx, Matthew Holmes, Bernd Beck |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a348a51ff7646c193a44ace0101e956 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Heterogeneity of performances in several inhibitory control tasks: male rhesus macaques are more easily distracted than females
por: Louise Loyant, et al.
Publicado: (2021) -
Analysis of Time-on-Task, Behavior Experiences, and Performance in Two Online Courses with Different Authentic Learning Tasks
por: Sanghoon Park
Publicado: (2017) -
No reduction of between-task interference in a dual-task with a repeating sequence of SOAs
por: Eva Röttger, et al.
Publicado: (2021) -
Curiosity and the desire for agency: wait, wait … don’t tell me!
por: Janet Metcalfe, et al.
Publicado: (2021) -
Multi-Task Learning with Task-Specific Feature Filtering in Low-Data Condition
por: Sang-woo Lee, et al.
Publicado: (2021)