Reconstructing evolutionary trajectories of mutation signature activities in cancer using TrackSig
Cancers evolve as they progress under differing selective pressures. Here, as part of the ICGC/TCGA Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium, the authors present the method TrackSig the estimates evolutionary trajectories of somatic mutational processes from single bulk tumour data.
Guardado en:
Autores principales: | Yulia Rubanova, Ruian Shi, Caitlin F. Harrigan, Roujia Li, Jeff Wintersinger, Nil Sahin, Amit Deshwar, PCAWG Evolution and Heterogeneity Working Group, Quaid Morris, PCAWG Consortium |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a3e0a924fa54deda33cd083d4a87624 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Inferring structural variant cancer cell fraction
por: Marek Cmero, et al.
Publicado: (2020) -
Combined burden and functional impact tests for cancer driver discovery using DriverPower
por: Shimin Shuai, et al.
Publicado: (2020) -
High-coverage whole-genome analysis of 1220 cancers reveals hundreds of genes deregulated by rearrangement-mediated cis-regulatory alterations
por: Yiqun Zhang, et al.
Publicado: (2020) -
A deep learning system accurately classifies primary and metastatic cancers using passenger mutation patterns
por: Wei Jiao, et al.
Publicado: (2020) -
Integrative pathway enrichment analysis of multivariate omics data
por: Marta Paczkowska, et al.
Publicado: (2020)