Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE

Abstract The cornea provides the largest refractive power for the human visual system. Its stiffness, along with intraocular pressure (IOP), are linked to several pathologies, including keratoconus and glaucoma. Although mechanical tests can quantify corneal elasticity ex vivo, they cannot be used c...

Descripción completa

Guardado en:
Detalles Bibliográficos
Autores principales: John J. Pitre, Mitchell A. Kirby, David S. Li, Tueng T. Shen, Ruikang K. Wang, Matthew O’Donnell, Ivan Pelivanov
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2020
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1a40301052aa4ca193d2e433e87d4622
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1a40301052aa4ca193d2e433e87d4622
record_format dspace
spelling oai:doaj.org-article:1a40301052aa4ca193d2e433e87d46222021-12-02T16:06:39ZNearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE10.1038/s41598-020-69909-92045-2322https://doaj.org/article/1a40301052aa4ca193d2e433e87d46222020-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-020-69909-9https://doaj.org/toc/2045-2322Abstract The cornea provides the largest refractive power for the human visual system. Its stiffness, along with intraocular pressure (IOP), are linked to several pathologies, including keratoconus and glaucoma. Although mechanical tests can quantify corneal elasticity ex vivo, they cannot be used clinically. Dynamic optical coherence elastography (OCE), which launches and tracks shear waves to estimate stiffness, provides an attractive non-contact probe of corneal elasticity. To date, however, OCE studies report corneal moduli around tens of kPa, orders-of-magnitude less than those (few MPa) obtained by tensile/inflation testing. This large discrepancy impedes OCE’s clinical adoption. Based on corneal microstructure, we introduce and fully characterize a nearly-incompressible transversely isotropic (NITI) model depicting corneal biomechanics. We show that the cornea must be described by at least two shear moduli, contrary to current single-modulus models, decoupling tensile and shear responses. We measure both as a function of IOP in ex vivo porcine cornea, obtaining values consistent with both tensile and shear tests. At pressures above 30 mmHg, the model begins to fail, consistent with non-linear changes in cornea at high IOP.John J. PitreMitchell A. KirbyDavid S. LiTueng T. ShenRuikang K. WangMatthew O’DonnellIvan PelivanovNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 10, Iss 1, Pp 1-14 (2020)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
John J. Pitre
Mitchell A. Kirby
David S. Li
Tueng T. Shen
Ruikang K. Wang
Matthew O’Donnell
Ivan Pelivanov
Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE
description Abstract The cornea provides the largest refractive power for the human visual system. Its stiffness, along with intraocular pressure (IOP), are linked to several pathologies, including keratoconus and glaucoma. Although mechanical tests can quantify corneal elasticity ex vivo, they cannot be used clinically. Dynamic optical coherence elastography (OCE), which launches and tracks shear waves to estimate stiffness, provides an attractive non-contact probe of corneal elasticity. To date, however, OCE studies report corneal moduli around tens of kPa, orders-of-magnitude less than those (few MPa) obtained by tensile/inflation testing. This large discrepancy impedes OCE’s clinical adoption. Based on corneal microstructure, we introduce and fully characterize a nearly-incompressible transversely isotropic (NITI) model depicting corneal biomechanics. We show that the cornea must be described by at least two shear moduli, contrary to current single-modulus models, decoupling tensile and shear responses. We measure both as a function of IOP in ex vivo porcine cornea, obtaining values consistent with both tensile and shear tests. At pressures above 30 mmHg, the model begins to fail, consistent with non-linear changes in cornea at high IOP.
format article
author John J. Pitre
Mitchell A. Kirby
David S. Li
Tueng T. Shen
Ruikang K. Wang
Matthew O’Donnell
Ivan Pelivanov
author_facet John J. Pitre
Mitchell A. Kirby
David S. Li
Tueng T. Shen
Ruikang K. Wang
Matthew O’Donnell
Ivan Pelivanov
author_sort John J. Pitre
title Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE
title_short Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE
title_full Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE
title_fullStr Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE
title_full_unstemmed Nearly-incompressible transverse isotropy (NITI) of cornea elasticity: model and experiments with acoustic micro-tapping OCE
title_sort nearly-incompressible transverse isotropy (niti) of cornea elasticity: model and experiments with acoustic micro-tapping oce
publisher Nature Portfolio
publishDate 2020
url https://doaj.org/article/1a40301052aa4ca193d2e433e87d4622
work_keys_str_mv AT johnjpitre nearlyincompressibletransverseisotropynitiofcorneaelasticitymodelandexperimentswithacousticmicrotappingoce
AT mitchellakirby nearlyincompressibletransverseisotropynitiofcorneaelasticitymodelandexperimentswithacousticmicrotappingoce
AT davidsli nearlyincompressibletransverseisotropynitiofcorneaelasticitymodelandexperimentswithacousticmicrotappingoce
AT tuengtshen nearlyincompressibletransverseisotropynitiofcorneaelasticitymodelandexperimentswithacousticmicrotappingoce
AT ruikangkwang nearlyincompressibletransverseisotropynitiofcorneaelasticitymodelandexperimentswithacousticmicrotappingoce
AT matthewodonnell nearlyincompressibletransverseisotropynitiofcorneaelasticitymodelandexperimentswithacousticmicrotappingoce
AT ivanpelivanov nearlyincompressibletransverseisotropynitiofcorneaelasticitymodelandexperimentswithacousticmicrotappingoce
_version_ 1718384887315038208