Label-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining.
Manual microscopic inspection of fixed and stained blood smears has remained the gold standard for Plasmodium parasitemia analysis for over a century. Unfortunately, smear preparation consumes time and reagents, while manual microscopy is skill-dependent and labor-intensive. Here, we demonstrate tha...
Guardado en:
Autores principales: | , , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a4558849d654dd789cf9c45f1b26387 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1a4558849d654dd789cf9c45f1b26387 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1a4558849d654dd789cf9c45f1b263872021-12-02T19:58:07ZLabel-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining.1553-734X1553-735810.1371/journal.pcbi.1009257https://doaj.org/article/1a4558849d654dd789cf9c45f1b263872021-08-01T00:00:00Zhttps://doi.org/10.1371/journal.pcbi.1009257https://doaj.org/toc/1553-734Xhttps://doaj.org/toc/1553-7358Manual microscopic inspection of fixed and stained blood smears has remained the gold standard for Plasmodium parasitemia analysis for over a century. Unfortunately, smear preparation consumes time and reagents, while manual microscopy is skill-dependent and labor-intensive. Here, we demonstrate that deep learning enables both life stage classification and accurate parasitemia quantification of ordinary brightfield microscopy images of live, unstained red blood cells. We tested our method using both a standard light microscope equipped with visible and near-ultraviolet (UV) illumination, and a custom-built microscope employing deep-UV illumination. While using deep-UV light achieved an overall four-category classification of Plasmodium falciparum blood stages of greater than 99% and a recall of 89.8% for ring-stage parasites, imaging with near-UV light on a standard microscope resulted in 96.8% overall accuracy and over 90% recall for ring-stage parasites. Both imaging systems were tested extrinsically by parasitemia titration, revealing superior performance over manually-scored Giemsa-stained smears, and a limit of detection below 0.1%. Our results establish that label-free parasitemia analysis of live cells is possible in a biomedical laboratory setting without the need for complex optical instrumentation. We anticipate future extensions of this work could enable label-free clinical diagnostic measurements, one day eliminating the need for conventional blood smear analysis.Paul LebelRebekah DialVenkata N P VemuriValentina GarciaJoseph DeRisiRafael Gómez-SjöbergPublic Library of Science (PLoS)articleBiology (General)QH301-705.5ENPLoS Computational Biology, Vol 17, Iss 8, p e1009257 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Biology (General) QH301-705.5 |
spellingShingle |
Biology (General) QH301-705.5 Paul Lebel Rebekah Dial Venkata N P Vemuri Valentina Garcia Joseph DeRisi Rafael Gómez-Sjöberg Label-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining. |
description |
Manual microscopic inspection of fixed and stained blood smears has remained the gold standard for Plasmodium parasitemia analysis for over a century. Unfortunately, smear preparation consumes time and reagents, while manual microscopy is skill-dependent and labor-intensive. Here, we demonstrate that deep learning enables both life stage classification and accurate parasitemia quantification of ordinary brightfield microscopy images of live, unstained red blood cells. We tested our method using both a standard light microscope equipped with visible and near-ultraviolet (UV) illumination, and a custom-built microscope employing deep-UV illumination. While using deep-UV light achieved an overall four-category classification of Plasmodium falciparum blood stages of greater than 99% and a recall of 89.8% for ring-stage parasites, imaging with near-UV light on a standard microscope resulted in 96.8% overall accuracy and over 90% recall for ring-stage parasites. Both imaging systems were tested extrinsically by parasitemia titration, revealing superior performance over manually-scored Giemsa-stained smears, and a limit of detection below 0.1%. Our results establish that label-free parasitemia analysis of live cells is possible in a biomedical laboratory setting without the need for complex optical instrumentation. We anticipate future extensions of this work could enable label-free clinical diagnostic measurements, one day eliminating the need for conventional blood smear analysis. |
format |
article |
author |
Paul Lebel Rebekah Dial Venkata N P Vemuri Valentina Garcia Joseph DeRisi Rafael Gómez-Sjöberg |
author_facet |
Paul Lebel Rebekah Dial Venkata N P Vemuri Valentina Garcia Joseph DeRisi Rafael Gómez-Sjöberg |
author_sort |
Paul Lebel |
title |
Label-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining. |
title_short |
Label-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining. |
title_full |
Label-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining. |
title_fullStr |
Label-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining. |
title_full_unstemmed |
Label-free imaging and classification of live P. falciparum enables high performance parasitemia quantification without fixation or staining. |
title_sort |
label-free imaging and classification of live p. falciparum enables high performance parasitemia quantification without fixation or staining. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/1a4558849d654dd789cf9c45f1b26387 |
work_keys_str_mv |
AT paullebel labelfreeimagingandclassificationoflivepfalciparumenableshighperformanceparasitemiaquantificationwithoutfixationorstaining AT rebekahdial labelfreeimagingandclassificationoflivepfalciparumenableshighperformanceparasitemiaquantificationwithoutfixationorstaining AT venkatanpvemuri labelfreeimagingandclassificationoflivepfalciparumenableshighperformanceparasitemiaquantificationwithoutfixationorstaining AT valentinagarcia labelfreeimagingandclassificationoflivepfalciparumenableshighperformanceparasitemiaquantificationwithoutfixationorstaining AT josephderisi labelfreeimagingandclassificationoflivepfalciparumenableshighperformanceparasitemiaquantificationwithoutfixationorstaining AT rafaelgomezsjoberg labelfreeimagingandclassificationoflivepfalciparumenableshighperformanceparasitemiaquantificationwithoutfixationorstaining |
_version_ |
1718375765754511360 |