Recursive MAGUS: Scalable and accurate multiple sequence alignment.
Multiple sequence alignment tools struggle to keep pace with rapidly growing sequence data, as few methods can handle large datasets while maintaining alignment accuracy. We recently introduced MAGUS, a new state-of-the-art method for aligning large numbers of sequences. In this paper, we present a...
Guardado en:
Autor principal: | Vladimir Smirnov |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a480c7a4dfb430ea27f619c372f5ae6 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
lra: A long read aligner for sequences and contigs.
por: Jingwen Ren, et al.
Publicado: (2021) -
A probabilistic model of local sequence alignment that simplifies statistical significance estimation.
por: Sean R Eddy
Publicado: (2008) -
Fast statistical alignment.
por: Robert K Bradley, et al.
Publicado: (2009) -
Scalable rule-based modelling of allosteric proteins and biochemical networks.
por: Julien F Ollivier, et al.
Publicado: (2010) -
NetTCR-2.0 enables accurate prediction of TCR-peptide binding by using paired TCRα and β sequence data
por: Alessandro Montemurro, et al.
Publicado: (2021)