Realization and training of an inverter-based printed neuromorphic computing system
Abstract Emerging applications in soft robotics, wearables, smart consumer products or IoT-devices benefit from soft materials, flexible substrates in conjunction with electronic functionality. Due to high production costs and conformity restrictions, rigid silicon technologies do not meet applicati...
Guardado en:
Autores principales: | Dennis D. Weller, Michael Hefenbrock, Michael Beigl, Jasmin Aghassi-Hagmann, Mehdi B. Tahoori |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a496ee5200c4c7283f7bd188bf66b71 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Hybrid low-voltage physical unclonable function based on inkjet-printed metal-oxide transistors
por: Alexander Scholz, et al.
Publicado: (2020) -
Neuromorphic computing with multi-memristive synapses
por: Irem Boybat, et al.
Publicado: (2018) -
Control of criticality and computation in spiking neuromorphic networks with plasticity
por: Benjamin Cramer, et al.
Publicado: (2020) -
Neuromorphic computation with a single magnetic domain wall
por: Razvan V. Ababei, et al.
Publicado: (2021) -
Graphene memristive synapses for high precision neuromorphic computing
por: Thomas F. Schranghamer, et al.
Publicado: (2020)