In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI.
Cardiac Magnetic Resonance Imaging (MRI) allows quantifying myocardial tissue deformation and strain based on the tagging principle. In this work, we investigate accuracy and precision of strain quantification from synthetic 3D tagged MRI using equilibrated warping. To this end, synthetic biomechani...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Public Library of Science (PLoS)
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a4d5e51d3ce4b1084600ff9ecfd1c27 |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1a4d5e51d3ce4b1084600ff9ecfd1c27 |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1a4d5e51d3ce4b1084600ff9ecfd1c272021-12-02T20:06:04ZIn-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI.1932-620310.1371/journal.pone.0258965https://doaj.org/article/1a4d5e51d3ce4b1084600ff9ecfd1c272021-01-01T00:00:00Zhttps://doi.org/10.1371/journal.pone.0258965https://doaj.org/toc/1932-6203Cardiac Magnetic Resonance Imaging (MRI) allows quantifying myocardial tissue deformation and strain based on the tagging principle. In this work, we investigate accuracy and precision of strain quantification from synthetic 3D tagged MRI using equilibrated warping. To this end, synthetic biomechanical left-ventricular tagged MRI data with varying tag distance, spatial resolution and signal-to-noise ratio (SNR) were generated and processed to quantify errors in radial, circumferential and longitudinal strains relative to ground truth. Results reveal that radial strain is more sensitive to image resolution and noise than the other strain components. The study also shows robustness of quantifying circumferential and longitudinal strain in the presence of geometrical inconsistencies of 3D tagged data. In conclusion, our study points to the need for higher-resolution 3D tagged MRI than currently available in practice in order to achieve sufficient accuracy of radial strain quantification.Ezgi BerberoğluChristian T StoeckPhilippe MoireauSebastian KozerkeMartin GenetPublic Library of Science (PLoS)articleMedicineRScienceQENPLoS ONE, Vol 16, Iss 11, p e0258965 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
Medicine R Science Q |
spellingShingle |
Medicine R Science Q Ezgi Berberoğlu Christian T Stoeck Philippe Moireau Sebastian Kozerke Martin Genet In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI. |
description |
Cardiac Magnetic Resonance Imaging (MRI) allows quantifying myocardial tissue deformation and strain based on the tagging principle. In this work, we investigate accuracy and precision of strain quantification from synthetic 3D tagged MRI using equilibrated warping. To this end, synthetic biomechanical left-ventricular tagged MRI data with varying tag distance, spatial resolution and signal-to-noise ratio (SNR) were generated and processed to quantify errors in radial, circumferential and longitudinal strains relative to ground truth. Results reveal that radial strain is more sensitive to image resolution and noise than the other strain components. The study also shows robustness of quantifying circumferential and longitudinal strain in the presence of geometrical inconsistencies of 3D tagged data. In conclusion, our study points to the need for higher-resolution 3D tagged MRI than currently available in practice in order to achieve sufficient accuracy of radial strain quantification. |
format |
article |
author |
Ezgi Berberoğlu Christian T Stoeck Philippe Moireau Sebastian Kozerke Martin Genet |
author_facet |
Ezgi Berberoğlu Christian T Stoeck Philippe Moireau Sebastian Kozerke Martin Genet |
author_sort |
Ezgi Berberoğlu |
title |
In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI. |
title_short |
In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI. |
title_full |
In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI. |
title_fullStr |
In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI. |
title_full_unstemmed |
In-silico study of accuracy and precision of left-ventricular strain quantification from 3D tagged MRI. |
title_sort |
in-silico study of accuracy and precision of left-ventricular strain quantification from 3d tagged mri. |
publisher |
Public Library of Science (PLoS) |
publishDate |
2021 |
url |
https://doaj.org/article/1a4d5e51d3ce4b1084600ff9ecfd1c27 |
work_keys_str_mv |
AT ezgiberberoglu insilicostudyofaccuracyandprecisionofleftventricularstrainquantificationfrom3dtaggedmri AT christiantstoeck insilicostudyofaccuracyandprecisionofleftventricularstrainquantificationfrom3dtaggedmri AT philippemoireau insilicostudyofaccuracyandprecisionofleftventricularstrainquantificationfrom3dtaggedmri AT sebastiankozerke insilicostudyofaccuracyandprecisionofleftventricularstrainquantificationfrom3dtaggedmri AT martingenet insilicostudyofaccuracyandprecisionofleftventricularstrainquantificationfrom3dtaggedmri |
_version_ |
1718375407278882816 |