Anharmonicity and Spectra–Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K<sub>3</sub>)
Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K<sub>3</sub>) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharm...
Guardado en:
Autores principales: | , , , , |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
MDPI AG
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a4fdfd61ebd4a099b623baaa85bf06a |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
id |
oai:doaj.org-article:1a4fdfd61ebd4a099b623baaa85bf06a |
---|---|
record_format |
dspace |
spelling |
oai:doaj.org-article:1a4fdfd61ebd4a099b623baaa85bf06a2021-11-25T18:27:11ZAnharmonicity and Spectra–Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K<sub>3</sub>)10.3390/molecules262267791420-3049https://doaj.org/article/1a4fdfd61ebd4a099b623baaa85bf06a2021-11-01T00:00:00Zhttps://www.mdpi.com/1420-3049/26/22/6779https://doaj.org/toc/1420-3049Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K<sub>3</sub>) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharmonic DVPT2 calculations applied for the single molecule model. The theoretical spectra accurately reconstructed the experimental ones permitting for reliable assignment of the MIR and NIR bands. For the first time, a detailed analysis of the NIR spectrum of a molecular system based on a naphthoquinone moiety was performed to elucidate the relationship between the chemical structure of menadione and the origin of the overtones and combination bands. In addition, the importance of these bands during interpretation of the MIR spectrum was demonstrated. The overtones and combination bands contribute to 46.4% of the total intensity of menadione in the range of 3600–2600 cm<sup>−1</sup>. Evidently, these bands play a key role in shaping of the C-H stretching region of MIR spectrum. We have shown also that the spectral regions without fundamentals may provide valuable structural information. For example, the theoretical calculations reliably reconstructed numerous overtones and combination bands in the 4000–3600 and 2800–1800 cm<sup>−1</sup> ranges. These results, provide a comprehensive origin of the fundamentals, overtones and combination bands in the NIR and MIR spectra of menadione, and the relationship of these spectral features with the molecular structure.Krzysztof B. BećJustyna GrabskaChristian W. HuckSylwester MazurekMirosław A. CzarneckiMDPI AGarticlenear-infrared (NIR)mid-infrared (MIR) spectroscopyovertonescombination bandsanharmonicityperiodic boundary systemOrganic chemistryQD241-441ENMolecules, Vol 26, Iss 6779, p 6779 (2021) |
institution |
DOAJ |
collection |
DOAJ |
language |
EN |
topic |
near-infrared (NIR) mid-infrared (MIR) spectroscopy overtones combination bands anharmonicity periodic boundary system Organic chemistry QD241-441 |
spellingShingle |
near-infrared (NIR) mid-infrared (MIR) spectroscopy overtones combination bands anharmonicity periodic boundary system Organic chemistry QD241-441 Krzysztof B. Beć Justyna Grabska Christian W. Huck Sylwester Mazurek Mirosław A. Czarnecki Anharmonicity and Spectra–Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K<sub>3</sub>) |
description |
Mid-infrared (MIR) and near-infrared (NIR) spectra of crystalline menadione (vitamin K<sub>3</sub>) were measured and analyzed with aid of quantum chemical calculations. The calculations were carried out using the harmonic approach for the periodic model of crystal lattice and the anharmonic DVPT2 calculations applied for the single molecule model. The theoretical spectra accurately reconstructed the experimental ones permitting for reliable assignment of the MIR and NIR bands. For the first time, a detailed analysis of the NIR spectrum of a molecular system based on a naphthoquinone moiety was performed to elucidate the relationship between the chemical structure of menadione and the origin of the overtones and combination bands. In addition, the importance of these bands during interpretation of the MIR spectrum was demonstrated. The overtones and combination bands contribute to 46.4% of the total intensity of menadione in the range of 3600–2600 cm<sup>−1</sup>. Evidently, these bands play a key role in shaping of the C-H stretching region of MIR spectrum. We have shown also that the spectral regions without fundamentals may provide valuable structural information. For example, the theoretical calculations reliably reconstructed numerous overtones and combination bands in the 4000–3600 and 2800–1800 cm<sup>−1</sup> ranges. These results, provide a comprehensive origin of the fundamentals, overtones and combination bands in the NIR and MIR spectra of menadione, and the relationship of these spectral features with the molecular structure. |
format |
article |
author |
Krzysztof B. Beć Justyna Grabska Christian W. Huck Sylwester Mazurek Mirosław A. Czarnecki |
author_facet |
Krzysztof B. Beć Justyna Grabska Christian W. Huck Sylwester Mazurek Mirosław A. Czarnecki |
author_sort |
Krzysztof B. Beć |
title |
Anharmonicity and Spectra–Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K<sub>3</sub>) |
title_short |
Anharmonicity and Spectra–Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K<sub>3</sub>) |
title_full |
Anharmonicity and Spectra–Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K<sub>3</sub>) |
title_fullStr |
Anharmonicity and Spectra–Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K<sub>3</sub>) |
title_full_unstemmed |
Anharmonicity and Spectra–Structure Correlations in MIR and NIR Spectra of Crystalline Menadione (Vitamin K<sub>3</sub>) |
title_sort |
anharmonicity and spectra–structure correlations in mir and nir spectra of crystalline menadione (vitamin k<sub>3</sub>) |
publisher |
MDPI AG |
publishDate |
2021 |
url |
https://doaj.org/article/1a4fdfd61ebd4a099b623baaa85bf06a |
work_keys_str_mv |
AT krzysztofbbec anharmonicityandspectrastructurecorrelationsinmirandnirspectraofcrystallinemenadionevitaminksub3sub AT justynagrabska anharmonicityandspectrastructurecorrelationsinmirandnirspectraofcrystallinemenadionevitaminksub3sub AT christianwhuck anharmonicityandspectrastructurecorrelationsinmirandnirspectraofcrystallinemenadionevitaminksub3sub AT sylwestermazurek anharmonicityandspectrastructurecorrelationsinmirandnirspectraofcrystallinemenadionevitaminksub3sub AT mirosławaczarnecki anharmonicityandspectrastructurecorrelationsinmirandnirspectraofcrystallinemenadionevitaminksub3sub |
_version_ |
1718411119083651072 |