Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals

Abstract Laser ablation is often simulated by the two-temperature model in which electrons are assumed to be thermalized by laser irradiation, while an explicit representation of interaction between laser-field and electrons is challenging but beneficial as being free from any adjustable parameters....

Descripción completa

Guardado en:
Detalles Bibliográficos
Autor principal: Yoshiyuki Miyamoto
Formato: article
Lenguaje:EN
Publicado: Nature Portfolio 2021
Materias:
R
Q
Acceso en línea:https://doaj.org/article/1a633f4e976a4291bf1192880038d37b
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
id oai:doaj.org-article:1a633f4e976a4291bf1192880038d37b
record_format dspace
spelling oai:doaj.org-article:1a633f4e976a4291bf1192880038d37b2021-12-02T16:14:03ZDirect treatment of interaction between laser-field and electrons for simulating laser processing of metals10.1038/s41598-021-94036-42045-2322https://doaj.org/article/1a633f4e976a4291bf1192880038d37b2021-07-01T00:00:00Zhttps://doi.org/10.1038/s41598-021-94036-4https://doaj.org/toc/2045-2322Abstract Laser ablation is often simulated by the two-temperature model in which electrons are assumed to be thermalized by laser irradiation, while an explicit representation of interaction between laser-field and electrons is challenging but beneficial as being free from any adjustable parameters. Here, an ab initio method based on the time-dependent density functional theory (TDDFT) in which electron-ion dynamics under a laser field are numerically simulated is examined as a tool for simulating femtosecond laser processing of metals. Laser-induced volume expansion in surface normal directions of Cu(111) and Ni(111) surfaces are simulated by using repeating slab models. The amount of simulated volume expansion is compared between Cu(111) and Ni(111) slabs for the same laser pulse conditions, and the Ni slab is found to expand more than the Cu slab despite the smaller thermal expansion coefficient of Ni compared with Cu. The analyzed electronic excitation and lattice motion were compared to those in the two-temperature model. The threshold fluence to release surface Cu atom deduced from current TDDFT approach is found to be comparable to those of Cu ablation reported experimentally.Yoshiyuki MiyamotoNature PortfolioarticleMedicineRScienceQENScientific Reports, Vol 11, Iss 1, Pp 1-8 (2021)
institution DOAJ
collection DOAJ
language EN
topic Medicine
R
Science
Q
spellingShingle Medicine
R
Science
Q
Yoshiyuki Miyamoto
Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals
description Abstract Laser ablation is often simulated by the two-temperature model in which electrons are assumed to be thermalized by laser irradiation, while an explicit representation of interaction between laser-field and electrons is challenging but beneficial as being free from any adjustable parameters. Here, an ab initio method based on the time-dependent density functional theory (TDDFT) in which electron-ion dynamics under a laser field are numerically simulated is examined as a tool for simulating femtosecond laser processing of metals. Laser-induced volume expansion in surface normal directions of Cu(111) and Ni(111) surfaces are simulated by using repeating slab models. The amount of simulated volume expansion is compared between Cu(111) and Ni(111) slabs for the same laser pulse conditions, and the Ni slab is found to expand more than the Cu slab despite the smaller thermal expansion coefficient of Ni compared with Cu. The analyzed electronic excitation and lattice motion were compared to those in the two-temperature model. The threshold fluence to release surface Cu atom deduced from current TDDFT approach is found to be comparable to those of Cu ablation reported experimentally.
format article
author Yoshiyuki Miyamoto
author_facet Yoshiyuki Miyamoto
author_sort Yoshiyuki Miyamoto
title Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals
title_short Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals
title_full Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals
title_fullStr Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals
title_full_unstemmed Direct treatment of interaction between laser-field and electrons for simulating laser processing of metals
title_sort direct treatment of interaction between laser-field and electrons for simulating laser processing of metals
publisher Nature Portfolio
publishDate 2021
url https://doaj.org/article/1a633f4e976a4291bf1192880038d37b
work_keys_str_mv AT yoshiyukimiyamoto directtreatmentofinteractionbetweenlaserfieldandelectronsforsimulatinglaserprocessingofmetals
_version_ 1718384337306517504