Mechanistic data-driven prediction of as-built mechanical properties in metal additive manufacturing
Abstract Metal additive manufacturing provides remarkable flexibility in geometry and component design, but localized heating/cooling heterogeneity leads to spatial variations of as-built mechanical properties, significantly complicating the materials design process. To this end, we develop a mechan...
Guardado en:
Autores principales: | Xiaoyu Xie, Jennifer Bennett, Sourav Saha, Ye Lu, Jian Cao, Wing Kam Liu, Zhengtao Gan |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2021
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a6a60506a7b450a9fccb2e8b2a9a37b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
Phase-field modeling of grain evolutions in additive manufacturing from nucleation, growth, to coarsening
por: Min Yang, et al.
Publicado: (2021) -
Mechanical behavior predictions of additively manufactured microstructures using functional Gaussian process surrogates
por: Robert Saunders, et al.
Publicado: (2021) -
Uncertainty quantification and composition optimization for alloy additive manufacturing through a CALPHAD-based ICME framework
por: Xin Wang, et al.
Publicado: (2020) -
Multifunctional antiperovskites driven by strong magnetostructural coupling
por: Harish K. Singh, et al.
Publicado: (2021) -
Data driven discovery of conjugated polyelectrolytes for optoelectronic and photocatalytic applications
por: Yangyang Wan, et al.
Publicado: (2021)