Performance and clinical utility of supervised machine-learning approaches in detecting familial hypercholesterolaemia in primary care
Abstract Familial hypercholesterolaemia (FH) is a common inherited disorder, causing lifelong elevated low-density lipoprotein cholesterol (LDL-C). Most individuals with FH remain undiagnosed, precluding opportunities to prevent premature heart disease and death. Some machine-learning approaches imp...
Guardado en:
Autores principales: | Ralph K. Akyea, Nadeem Qureshi, Joe Kai, Stephen F. Weng |
---|---|
Formato: | article |
Lenguaje: | EN |
Publicado: |
Nature Portfolio
2020
|
Materias: | |
Acceso en línea: | https://doaj.org/article/1a6aee63d7fb4492b12b4d6a4b286e1b |
Etiquetas: |
Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
Ejemplares similares
-
VEGF Family Gene Expression as Prognostic Biomarkers for Alzheimer’s Disease and Primary Liver Cancer
por: Kai Xu, et al.
Publicado: (2021) -
Utilizing machine learning to improve clinical trial design for acute respiratory distress syndrome
por: E. Schwager, et al.
Publicado: (2021) -
Weak supervision as an efficient approach for automated seizure detection in electroencephalography
por: Khaled Saab, et al.
Publicado: (2020) -
Yet Another Automated Gleason Grading System (YAAGGS) by weakly supervised deep learning
por: Yechan Mun, et al.
Publicado: (2021) -
Social media language of healthcare super-utilizers
por: Sharath Chandra Guntuku, et al.
Publicado: (2021)